掌握相关系数的测定和性质
明确相关分析与回归分析的特点
建立回归直线方程,明确估计标准误差的计算和意义
一、相关关系的含义
宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额与销售量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。这些关系可由数学中的函数关系来确切地描述,因而也可以认为是一种完全相关关系。有些现象间的依存关系则没有那么严格。当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不是只有身高,它还会受遗传、饮食习惯等因素的制约和影响。社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都称为相关关系。在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点
(一)现象之间确实存在数量上的依存关系
如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化。在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。例如,把身高作为自变量,则体重就是因变量。
(二)现象之间数量上的关系是不确定的
相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。这意味着一个变量虽然受另一个(或一组)变量的影响,却并不由这一个(或一组)变量完全确定。例如,前面提到的身高和体重之间的关系就是这样一种关系。
三、相关关系的种类
现象之间的相互关系很复杂,它们涉及的变动因素多少不同,作用方向不同,表现出来的形态也不同。相关关系大体有以下几种分类:
(一)正相关与负相关
按相关关系的方向分,可分为正相关和负相关。当两个因素(或变量)的变动方向相同时,即自变量x值增大(或减小),因变量y值也相应地增大(或减小),这样的关系就是正相关。如家庭消费支出随收入增加而增加就属于正相关。如果两个因素(或变量)变动的方向相反,即自变量x值增大(或减小),因变量y值随之减小(或增大),这样的关系则称为负相关。如商品流通费用率随商品经营的规模增大而逐渐降低就属于负相关。
(二)单相关与复相关
按自变量的多少分,可分为单相关和复相关。单相关是指两个变量之间的相关关系,即所研究的问题只涉及一个自变量和一个因变量,如职工的生活水平与工资之间的关系就是单相关。复相关是指三个或三个以上变量之间的相关关系,即所研究的问题涉及若干个自变量与一个因变量,如同时研究成本、市场供求状况、消费倾向对利润的影响时,这几个因素之间的关系是复相关。
(三)线性相关与非线性相关
按相关关系的表现形态分,可分为线性相关与非线性相关。线性相关是指在两个变量之间,当自变量x值发生变动时,因变量y值发生大致均等的变动,在相关图的分布上,近似地表现为直线形式。比如,商品销售额与销售量即为线性相关。非线性相关是指在两个变量之间,当自变量值发生变动时,因变量值发生不均等的变动,在相关图的分布上,表现为抛物线、双曲线、指数曲线等非直线形式。比如,从人的生命全过程来看,年龄与医疗费支出呈非线性相关。
(四)完全相关、不完全相关与不相关
按相关程度分,可分为完全相关、不完全相关和不相关。完全相关是指两个变量之间具有完全确定的关系,即因变量y值完全随自变量x值的变动而变动,它在相关图上表现为所有的观察点都落在同一条直线上,这时,相关关系就转化为函数关系。不相关是指两个变量之间不存在相关关系,即两个变量变动彼此互不影响。自变量x值变动时,因变量y值不随之作相应变动。比如,家庭收入多少与孩子多少之间不存在相关关系。不完全相关是指介于完全相关和不相关之间的一种相关关系。比如,农作物产量与播种面积之间的关系。不完全相关关系是统计研究的主要对象。