冶铁炼钢技术的发展
冶铁技术
秦汉时期冶铸生铁的技术在春秋战国时期广泛发展的基础上,又有了新的进步。西汉时期的竖炉已达到较高的水平和较大规模。从南阳铸铁遗址发掘出的炉底和炉壁耐火砖复原情况来看,竖炉高度为3~4米,直径约2米。郑州古荥镇西汉中晚期冶铁遗址发现有椭圆形高炉2座,其中一炉短轴约2.7米,长轴约4米,面积约8.48平方米,高度可能达到5~6米,容积约50立方米。我国古代炼铁高炉是从炼铜高炉的基础上发展起来的。西汉初年的炼铜高炉也十分巨大。据南齐时刘悛的实地调查,“南广郡界蒙山下有城名蒙城,可二顷地,有烧炉四所,高一丈、广一丈五尺”,这就是汉文帝时邓通冶铜铸钱的作坊。
竖炉的炉体扩大,与鼓风技术的改进是有密切联系的。山东滕县宏道院出土的东汉画像石中,有一方是描写冶铁劳动过程的,上有鼓风的图像,其中鼓风大皮囊上排列有四根吊杆,右方下部是个风管。河南巩县铁生沟、郑州古荥镇、南阳瓦房庄和鹤壁市的冶铁遗址,均有鼓风风管出土。其中古荥镇和瓦房庄发掘出的弯头朝下的陶胎风管下侧泥层已经烧熔,经实验测定,烧熔温度为1250~1280℃。汉代的高炉有四个风口,每个风口可能使用一排皮囊来鼓风,以提高炉内的温度。当时鼓风设备有用人力的,称为“人排”;有用马力的,称为“马排”。至迟在西汉、东汉之交,又发明了“水排”,利用水力进行鼓风。据记载,东汉初年,南阳太守杜诗就使用水排于鼓铸,结果“用力少,见功多,百姓便之”。中国发明水排的时间,要比欧洲早1200年。
从铁生沟遗址,我们可以看到汉代耐火材料使用的进展。该遗址的炼炉多作半地穴式,上部用耐火砖垒砌,并在炉器抹以耐火拌草泥,有的炉底还垫有耐火土。耐火砖系由耐火黏土制成,其中掺有石英石和绿色岩石。其种类多样,用在不同的炼炉及炼炉的不同部位,说明人们已经掌握了各种耐火材料的配制和使用的知识。铁生沟遗址中发现有石灰石,此外对熔渣的化验发现含有41.99%的CaO和3.22%的MgO,这是当时冶铁已使用了碱性熔剂的证明。
由于炼铁炉造得高大,结构有了改进,鼓风设备有了进步,炉温得到了提高,到西汉中期我国又进一步能够铸造低硅的灰口生铁。目前经过科学鉴定的最早的灰口铁出自河北满城刘胜墓。在刘胜墓出土的铁器中,对需要强度和韧性的锼是用可锻铸铁;而对需要承载能力、润滑和耐磨性能的车的锏(轴承)则用灰口铸铁。河南南阳瓦房庄汉代冶铁遗址也出土有东汉用来浇铁釜的灰口铁浇口,经化验,是高磷的灰口铁,含磷0.7%。在河南渑池窖藏铁器中,也有一部分是用灰口铸铁制成的,如箭头范、铧范以及卤等。铧范含碳2.31%,接近现代高强度铸铁(含碳2.8%~3%),但含硅量低,只有0.21%。这些灰口铸铁的石墨片的大小和分布,都比较合理。说明汉魏至北朝时期,我国先民在制造和控制灰口铸铁的工艺上,已经积累了丰富的经验。现在生产灰口铸铁,其含硅量一般要求在1%~3.5%,因为硅能促使铸铁中碳变成片状石墨而使其断口呈暗灰色。如果含硅量低于1%,在一般生产条件下就很难获得灰口铁。而我国古代有过很多含硅量低于1%的灰口铸铁,看来是采用了一种特殊的技术。深入研究我国古代的这种技术,对于现代炼铁也是很有意义的。
值得注意的是,巩县铁生沟汉代冶铁遗址中出土的一件铁镬,经检验,有形状良好的球状石墨,有明显的石墨核心和放射性结构,与现行球墨铸铁国家标准一类A级石墨相当。类似的有球状或球团状石墨的铸铁生产工具已发现6件,这是我国古代铸铁技术的杰出成就,而现代球墨铸铁是1947年才研制成功的。现在制造球墨铸铁的新工艺,是在试验使用金属镁和稀土金属做球化剂成功以后,才得到推广的。远在汉代,当然不可能使用这种球化剂。因此进一步搞清楚当时制造球墨铸铁的工艺,对于今天改进铸造的生产工艺,具有重要的现实意义。
汉代是我国冶铁技术发展的一个高峰时期。当时已能生产白口生铁、麻口生铁、灰口生铁以及白心、黑心可锻铸铁,甚至还能生产与现代球墨铸铁金相组织极为相似的“中国古代球状石墨铸铁”。除了合金铸铁和1947年研制成功的使用金属镁和稀土金属做球化剂的球墨铸铁以外,当今世界上的生铁产品仍然是这几种。可见,我国汉代的炼铁技术达到了成熟阶段。
从出土的历代生铁器物来看,它主要是用来铸造农具,发挥它质硬耐磨的特长。例如河北兴隆出土的大批铁范中不少就是用来铸造农具的,有各种形式的铲、锄、镬、镰等小农具,也有比较大型的农具部件,如犁铧和耧铧。
生铁应用在铸造手工业工具方面也很广泛。例如河南辉县固围村战国魏墓出土的95件铁器中很多都是手工工具。此外,作为车辆零件的也不少,例如陕西西安礼泉出土了汉代的生铁车官(车辆轴与毂之间的金属圈)和齿轮、河南渑池出土了汉魏时期各种大小的成套轴承。生铁虽不宜于制造带刃的兵器和工具,但在宋代以后用于铸造炮身之类的古代重型武器却很广泛。我国从南宋(12世纪初)开始,历代注重铸造大炮,炮岙有的长达数米,重量从数百斤到数千斤。有的炮筒为多层套铸,有的则内层以生铁铸,外层则铸以青铜以防震裂。
生铁在古代还用于制造度量衡中的铁权。山东黄海之滨的文登县便曾出土秦代的铁权。
历来用于建筑方面的生铁也不少。例如西汉中山靖王刘胜墓的墓道外口有两道夹墙,其间浇灌了铁水,形成铁门,严加密封;位于河北赵县胶河上的著名的赵州桥,建造于隋代开皇至大业年间,至今完好,它之所以如此坚固耐久,也是因为石缝间浇铸了铁水;陕西乾县唐代乾陵墓道砌石每块之间也都采用了这种“冶金固隙”,经检验是在石块之间凿成串通的孔道,再注入生铁水。
我国古代又常用生铁铸造大型器物,河北沧州古城的铁狮子是五代后周广顺三年(953)用生铁铸件组装而成的,狮身高3.9米,头高1.5米,共高5.4米,身长6.8米,总重约十余万斤。经历千年,保存下来,充分展示了中国古代生铁的冶铸的高超工艺水平。
炼钢技术
块炼铁(或熟铁)、生铁和钢,都是铁碳合金,它们之间的主要差别在于含碳量的多少。块炼铁(或熟铁)的含碳量低,生铁的含碳量高,而钢的含碳量则介于块炼铁(或熟铁)和生铁之间。因此,古代的炼钢方法主要有两种:如果用块炼铁(或熟铁)做原料,就必须用渗碳技术以增加碳分;如果用生铁做原料,就必须用脱碳技术以减少碳分。
我国古代炼钢技术,大致兴起于春秋晚期。1976年在湖南长沙出土了一口春秋末期的钢剑,通长38.4厘米。用放大镜观察剑身断面,可以看出反复锻打的层次,中部可以看出七至九层的迭打层。离剑锋约8厘米处取样分析,金相组织为含有球状碳化铁的铁素体组织,组织较均匀,铁素体晶粒平均直径为0.003毫米。由碳化物的数量估计,原件系含碳量为0.5%左右的退火中碳钢。
从文献记载来看,春秋末年吴国和越国已能冶炼干将、莫邪之类的钢制宝剑。《吴越春秋》载:“干将者,吴人也,与欧冶子同师,俱能为剑……莫邪,干将之妻也,干将作剑,采五山之铁精,六合之金英……而金铁之精,不消沦流,于是干将不知其由……于是干妻乃断发剪爪,投入炉中,使童女童男三百人鼓橐装炭,金铁乃濡,遂以成剑,阳曰干将,阴曰莫邪,阳作龟文,阴作漫理。”这些记载虽属于传说,但并不是凭空虚构的,所记原料经过精选、熔炼锻制极费工力等项,符合早期制钢的特点,说明吴越地区制钢技术发展较早。
在战国时代,钢制品已不是稀罕之物,一般锋利的铁兵器是用钢制成的,著名的剑戟也是用钢锻制的。战国时代著作《尚书·禹贡篇》记载梁州(约当今四川省)贡物有“谬、铁、银、镂”,过去注释家都认为“镂”是一种“刚铁”。《荀子·议兵篇》记载楚国的兵器有“宛钜铁它,惨如蜂虿”,过去注释家又认为“钜”就是“刚铁”。《史记》也记载,秦昭王曾说:“吾闻楚之铁剑利。”出土的战国铁器中,钢制品占有相当比例,如1965年在河北易县武阳台村燕下都遗址44号墓出土的79件铁器中,共有锻件57件,其中包括由89片甲片组成的胄一件,以及剑、矛、戟、刀、匕首、带钩等。对部分铁器的检查表明,除了个别由块炼铁直接锻成(如M44:19剑)而外,其余大都是块炼钢锻制的。
春秋战国时期的炼钢技术有两种:一种是把海绵铁(即块炼铁)直接放在炽热的木炭中长期加热,表面渗碳,再经反复锻打,使之成为渗碳钢。易县燕下都44号墓出土的钢制品就是用这种方法炼成的。这是我国最早的炼钢法。另一种是把海绵铁配合渗碳剂和催化剂,密封加热,使之渗碳成钢,俗称“焖钢”。这是我国流传很久的一种炼钢方法。《吴越春秋》所记干将、莫邪等宝剑的钢材,冶炼时曾“断发剪爪,投入炉中”,应该是用这种方法炼制的,因为头发和指甲中含有磷质,可做催化剂。河北满城1号汉墓(刘胜墓)出土的刘胜佩剑和错金书刀,经过分析,表明含磷较高,错金书刀的刃部中间还有含钙磷的较大夹杂物,有可能在渗碳时使用了骨灰一类的催化剂。此外,长期流传在河南、湖北、江苏等地的“焖钢”冶炼法,把熟铁块放在陶制或铁制容器中,除了按一定配方加入渗碳剂以外,还使用含有磷质的骨粉作为主要催化剂,然后密封加热,使之渗碳成为钢材。
明代宋应星《天工开物》卷十《锤锻》一节就记载了渗碳炼制钢针的方法,其工艺如下:
用铁尺一根,锥成线眼,逐寸剪断为针,先搓其未成颖,用小槌敲扁其本。钢锥穿鼻,复槎其外,然后入釜,慢火炒熬,炒后以土末入松木,火矢豆豉三物罢盖。下用火蒸,留针二三口,插于其外,以试火候,其外针入手稔咸粉碎,则其下针火候皆足,然后开封入水健之。
从已经出土的古代钢制品的金相考察结果来看,我国至迟在战国晚期已广泛使用淬火工艺。燕下都44号墓出土的战国锻钢件大都经过淬火处理,例如M44:12长钢剑、M44:100残钢剑和M44:9钢戟,都是把薄钢片经过反复折叠锻打成型之后,再经过淬火的,都发现有针状的马氏体组织;还有一件矛(M44:115)的饺部(指矛头的较细部分)和一件箭铤(M44:87),分别为0.25%及0.2%的碳素钢,由铁素体和球光体组成,是经过正火处理后的组织。说明当时除淬火工艺之外,还掌握了正火工艺,已能依据不同的需求,对钢材进行不同的热处理,以改善其机械性能。
2.铸铁脱碳钢
块炼铁质地差,产量低,且需毁炉取铁,作为钢制工具和兵器的铁料来源,显然难以适应日益增长的要求。于是,以生铁为原料的固体脱碳制钢技术便应运而生。这种脱碳制钢技术是在铸铁柔化处理技术的基础上发展起来的。我国战国时代已经广泛采用柔化处理工艺,对生铁进行脱碳退火,从而制成可锻铸铁(韧性铸铁)。有的可锻铸铁件的外层已成为钢,而内层还是生铁,出现了脱碳不完全的钢和铁共存于同一工件的复合组织。例如河北石家庄市庄村赵国遗址出土的铁斧和河南辉县固围村魏墓出土的铁匼,即属于这一类。如果生铁铸件脱碳退火时,由于时间和温度控制得当,在固体状态下进行比较充分而又适当的氧化脱碳,即使白口组织消失,又基本不析出或只析出很少的石墨,不至于变成可锻铸铁,那么就可得到“铸铁脱碳钢”。1977年在河南登封告城战国遗址中出土的一批铁器,经检验是目前所知我国最早的铸铁脱碳钢制品。从战国到西汉,铸铁脱碳成钢的技艺逐步成熟。在北京大葆台西汉燕王墓(前80)遗址、河南南阳瓦房庄冶铸遗址以及渑池汉魏铁器窖藏都出土有铸铁脱碳钢件。巩县铁生沟、南阳瓦房庄、郑州古荥镇等处还出土有大量成形的铸铁脱碳钢板,经化验,其含碳量一般在0.1%~0.2%之间。
这种固体脱碳制钢工艺,至少在战国至六朝时期一直在广泛采用。通过脱碳的办法把铸铁处理成钢件,这是我国古代发明的一种特殊的制钢方法。这种方法的特点之一是有控制的适当地脱碳,它与韧性铸铁的区别就在于基本不析出或只析出很少的石墨;特点之二是钢中夹杂物很少,这是因为它保留了生铁夹杂少的优点,而没有块炼铁和熟铁夹杂物多的缺点。当然,这种制钢方法也有它的局限性,它不可能制成较大和较厚的钢件,又不易很好地控制钢件中的含碳量。现在已发现的这种钢件都是比较薄的,一般不超过1厘米,只有这样薄的生铁铸件才便于由表及里全部脱碳成钢。
3.炒钢