At the end of the last century the illustrious French mathematician Laplace undertook a new investigation of the famous problem, and was rewarded with a success which for a long time appeared to be quite complete. Let us suppose that the moon lies directly between the earth and the sun, then both earth and moon are pulled towards the sun by the solar attraction; as, however, the moon is the nearer of the two bodies to the attracting centre it is pulled the more energetically, and consequently there is an increase in the distance between the earth and the moon. Similarly when the moon happens to lie on the other side of the earth, so that the earth is interposed directly between the moon and the sun, the solar attraction exerted upon the earth is more powerful than the same influence upon the moon. Consequently in this case, also, the distance of the moon from the earth is increased by the solar disturbance. These instances will illustrate the general truth, that, as one of the consequences of the disturbing influence exerted by the sun upon the earth-moon system, there is an increase in the dimensions of the average orbit which the moon describes around the earth. As the time required by the moon to accomplish a journey round the earth depends upon its distance from the earth, it follows that among the influences of the sun upon the moon there must be an enlargement of the periodic time, from what it would have been had there been no solar disturbing action.
This was known long before the time of Laplace, but it did not directly convey any explanation of the lunar acceleration. It no doubt amounted to the assertion that the moon's periodic time was slightly augmented by the disturbance, but it did not give any grounds for suspecting that there was a continuous change in progress. It was, however, apparent that the periodic time was connected with the solar disturbance, so that, if there were any alteration in the amount of the sun's disturbing effect, there must be a corresponding alteration in the moon's periodic time. Laplace, therefore, perceived that, if he could discover any continuous change in the ability of the sun for disturbing the moon, he would then have accounted for a continuous change in the moon's periodic time, and that thus an explanation of the long-vexed question of the lunar acceleration might be forthcoming.
The capability of the sun for disturbing the earth-moon system is obviously connected with the distance of the earth from the sun. If the earth moved in an orbit which underwent no change whatever, then the efficiency of the sun as a disturbing agent would not undergo any change of the kind which was sought for. But if there were any alteration in the shape or size of the earth's orbit, then that might involve such changes in the distance between the earth and the sun as would possibly afford the desired agent for producing the observed lunar effect. It is known that the earth revolves in an orbit which, though nearly circular, is strictly an ellipse. If the earth were the only planet revolving around the sun then that ellipse would remain unaltered from age to age. The earth is, however, only one of a large number of planets which circulate around the great luminary, and are guided and controlled by his supreme attracting power. These planets mutually attract each other, and in consequence of their mutual attractions the orbits of the planets are disturbed from the ****** elliptic form which they would otherwise possess. The movement of the earth, for instance, is not, strictly speaking, performed in an elliptical orbit. We may, however, regard it as revolving in an ellipse provided we admit that the ellipse is itself in slow motion.
It is a remarkable characteristic of the disturbing effects of the planets that the ellipse in which the earth is at any moment moving always retains the same length; that is to say, its longest diameter is invariable. In all other respects the ellipse is continually changing. It alters its position, it changes its plane, and, most important of all, it changes its eccentricity. Thus, from age to age the shape of the track which the earth describes may at one time be growing more nearly a circle, or at another time may be departing more widely from a circle. These alterations are very small in amount, and they take place with extreme slowness, but they are in incessant progress, and their amount admits of being accurately calculated. At the present time, and for thousands of years past, as well as for thousands of years to come, the eccentricity of the earth's orbit is diminishing, and consequently the orbit described by the earth each year is becoming more nearly circular. We must, however, remember that under all circumstances the length of the longest axis of the ellipse is unaltered, and consequently the size of the track which the earth describes around the sun is gradually increasing. In other words, it may be said that during the present ages the average distance between the earth and the sun is waxing greater in consequence of the perturbations which the earth experiences from the attraction of the other planets. We have, however, already seen that the efficiency of the solar attraction for disturbing the moon's movement depends on the distance between the earth and the sun. As therefore the average distance between the earth and the sun is increasing, at all events during the thousands of years over which our observations extend, it follows that the ability of the sun for disturbing the moon must be gradually diminishing.
[PLATE: CAMBRIDGE OBSERVATORY.]