希尔伯特在谈到“无限大数”的奇怪而美妙的性质时说到:
我们设想有一家旅馆,内设有限个房间,而所有的房间都已客满。这时来了一位新客,想订个房间,“对不起”,旅馆主人说,“所有的房间都住满了。”
再设想另一家旅馆,内设无限个房间,所有的房间也都客满了。这时也有一位新客,想订个房间。“不成问题!”旅馆主人说。接着他就把1号房间的旅客移到2号房间,2号房间的旅客移到3号房间,3号房间的旅客移到4号房间等等,这样继续移下去。这样一来,新客就被安排住进了已被腾空的1号房间。
我们再设想一个有无限个房间的旅馆,各个房间也都住满了客人。这时又来了无穷多位要求订房间的客人。“好的,先生们,请等一会儿。”旅馆主人说。
于是他把1号房间的旅客移到2号房间,2号房间的旅客移到4号房间,3号房间的旅客移到6号房间,如此等等,这样继续下去。所有的单号房间都腾出来了,新来的无穷多位客人可以住进去,问题解决了!
此时,又来了无穷多个旅行团,每个旅行团有无穷多个旅客,只见这个老板不慌不忙,让原来的旅客1号房间客人搬到2号,2号房间客人搬到4号……,k号房间客人搬到2k号。这样,1号,3号,5号……所有奇数房间就都空出来了。
这个故事是伟大的数学家大卫·希尔伯特所讲述,他借此引出了数学上神奇诡异的“可列无穷大“的概念。
与现代图论结合,产生了网络枢纽无堵塞观点(参见n色定理)。