登陆注册
47965500000007

第7章 同角三角函数的基本关系式

同角三角函数的基本关系式

【教学目标】

(1)掌握同角三角函数之间的三组常用关系,平方关系、商数关系、倒数关系;(2)会运用同角三角函数之间的关系求三角函数值或化简三角式;应用同角三角函数关系,化简三角式(求值);并能证明简单的三角恒等式;(3)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析、解决三角问题的思维能力。

(4)通过同角三角函数的基本关系学习,提示事物之间的普通联系规律,培养学生辩证唯物主义观点。

【教学建议】

重点、难点分析

重点是三个公式的推导和应用。

(1)已知a的三角函数值中的一个,表示它的其他三角函数值;三解函数的定义同角三角函数的三个基本关系式:sin2α+cos2α=1sinαcosα=tanαtanαctgα=1

两类基本应用

(2)化简三角函数式;

(3)证明简单的三角恒等式。

难点是公式的应用。

(1)利用a的某一三角函数值求a的其他三角函数值;(2)三角恒等式的证明,证明恒等式可从左向右,也可从右向左,等价变形;(3)接受切化弦的思想,及恒等变形中等价转化的思想;(4)化简是最基本的解题思想,结果要求最简形式。

【教学建议】

(1)在应用平方关系时,其结果不唯一,注意根据角所在的象限来取舍;(2)在学习中必须注意“同角”这一前提,只有在这一前提下都能使用公式;(3)注意公式的等价变形和常用数值:sin2α=1-cos2α;cos2α=1-sin2α;sinα=cosα·tanα;cosα=sinαtanα;(sinα±cosα)2=1±2sinαcosα;1-sin2α=|cosα|。

(4)证明恒等式要注意等价变形,不能随意扩大和缩小范围;(5)化简要尽量使结果只存在一个角,尽量使根式下,分母上不含有三角函数,其结果还要依题意而定。

【教学设计方案】

同角三角函数的基本关系式

教学目标

1掌握同角三角函数之间的三组常用关系,平方关系、商数关系、倒数关系。

2会运用同角三角函数之间的关系求三角函数值或化简三角式。

教学重点

理解并掌握同角三角函数关系式。

教学难点

已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;教学用具直尺、投影仪。

教学步骤

设置情境

图1

与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化。

探索研究

(1)复习任意角三角函数定义

上节课我们已学习了任意角三角函数定义,如图1所示,任意角a的六个三角函数是如何定义的呢?

在a的终边上任取一点P(x,y),它与原点的距离是r(r>0),则角a的六个三角函数的值是:sina=yr;cosa=xr;tana=yx;ctga=xy;seca=rx;csca=ry;(2)推导同角三角函数关系式观察tana=yx及ctga=xy,当a≠kπ+π2(k∈Z)时,有何关系?

当a≠kπ且a≠kπ+π2(k∈Z)时、sina、cosa及tana有没有商数关系?

通过计算发现tana与ctga互为倒数

∵tana·ctga=yx·xy=1

由于tana=yx=yrxr=sinacosa,这些三角函数中还存在平方关系,请计算sin2a+cos2a的值。

由三角函数定义我们可以看到:sin2a+cos2a=

yr2+xr2

=y2+x2r2=r2r2=1

∴sin2a+cos2a=1,现在我们将同角三角函数的基本关系式总结如下:①平方关系:sin2a+cos2a=1

②商数关系:tana=sinacosa

③倒数关系:tana·ctga=1

即同一个角a的正弦、余弦的平方和等于1,商等于角a的正切,同一个角的正切、余切之积等于1(即同一个角的正切、余切互为倒数)。上面这三个关系式,我们称之为恒等式,即当a取使关系式两边都有意义的任意值时,关系式两边的值相等,在第二个式中a≠kπ+π2(k∈Z),在第三个式中,a的终边不在坐标轴上,这时式中两边都有意义,以后解题时,如果没有特别说明,一般都把关系式看成是意义的。其次,在利用同角三角函数的基本关系式时,要注意其前提“同角”的条件。

(3)同角三角函数关系式的应用

同角三角函数关系式十分重要,应用广泛,其中一个重要应用是根据一个角的某一个三角函数,求出这个角的其他三角函数值。

例1已知sina=45,且a是第二象限角,求cosa,tana,ctga的值。

解:因为sina=45且a为第二象限角所以cosa=-1-sin2a=-1-452=-35

tana=sinacosa=45-35=-43

ctga=1tana=-34

例2已知cosα=-817,求sinα,tanα的值。

解:∵cosα<0,且cosα≠-1,∴α是第二或第三象限角。

如果α是第二象限角,那么

sinα=1-cos2α=1-(-817)2=1517

tanα=sinαsinα=1517×(-178)=-158

如果α是第三象限角,那么sina=-1517,α=158。

说明:本题没有具体指出a是第几象限角,则必须由cosa的函数值决定a可能是哪几象限的角,再分象限加以讨论。

例3已知tana为非零实数,用tana表示sina,cosa。

解:因为sin2a+cos2a=1,所以sin2a=1-cos2a又因为sinacosa=tana,所以tan2a=sin2acos2a=1-cos2acos2a=1cos2a-1

于是1cos2a=1+tan2a∴cos2a=11+tan2a由tana为非零实数,可知角a的终边不在坐标轴上,考虑tana的符号分第一、第四象限及第二、第三象限,从而:cosα=11+tan2α,当α为第一、第四象限,-11+tan2α,当α为第二、第三象限;sina=ctga·tana=11+tan2α,当α为第一、第四象限角,-11+tan2α,当α为第二、第三象限角;在三角求值过程中应尽量避免开方运算,在不可避免时,先计算与已知函数有平方关系的三角函数,这样可只进行一次开方运算,并可只进行一次符号说明。

同角三角函数关系式还经常用于化简三角函数式,请看例4

例4化简下列各式:

(1)1-sin2100°;(2)1-2sin20°cos20°。

解:(1)1-sin2100°(2)1-2sin20°cos20°=cos2100°=(sin20°-cos20°)2

=|cos100°|=cos20°-sin20°演练反馈(1)已知:cosa=-513,求a的其他各三角函数值。

(2)已知tana=-158,求sina,cosa。

(3)化简:1-2sin10°cos10°cos10°-1-sin280°解答:(1)解:∵cosa=-513<0,所以a是第二、第三象限的角。

如果a是第二象限的角,则:

sina=1-cos2a=1--5132=1213

tana=sinacosa=1213×-135=-125

ctga=1tana=-512

又seca=1cosa=-135csca=1sina=1312

如果a是第三象限的角,那么

sina=-1312tana=125seca=-135

ctga=512csca=-1312

(2)解:∵tana=-158<0∴a是第二或第四象限的角例3的求法可知当a是第二象限时cosa=-11+tan2a=

-11+-1582=-817

sina=cosa·tana=-817

-158=1517

当a是第四象限时

cosa=11+tan2a=

11+-1582

=817

sina=cosa·tana=817-158=-1517

(3)解:原式=sin210°-2sin10°cos10°+cos210°cos10°-|cos80°|=|sin10°-cos10°|cos10°-cos80°=cos10°-sin10°cos10°-sin10°=1

【本课小结】

(1)同角三角函数的三组关系式的前提是“同角”,因此sin2a+cos2β≠1,tana≠sinβcosγ……

(2)诸如tana=sinacosa,tana·ctga=1,……它们都是条件等式,即它们成立的前提是表达式有意义。

(3)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论。

课时作业

1已知sina=45,a∈(0,π),则tana等于A.43B.34C.±43D.±43

2若sinθsecθ=12,则tanθ+ctgθ的值是A.-2B.2C.±2D.12

3化简(1+tan2θ)cos2θ

4化简1+sina1-sina-

1-sina1+sina,其中a为第二象限角。

5已知tana=2,求sina+cosasina-cosa的值。

6已知a是三角形的内角,sina+cosa=15,求tana值。

【参考答案】

1D;2B;31;4-2tana;53;6-43

注:4略解:原式=

(1+sina)2cos2a-(1-sina)2cos2a=1+sina-(1-sina)|cosa|=

2sina|cosa

∵a在第二象限

∴cosa<0

∴2sina|cosa|=2sina-cosa=-2tana。

6略解:

由sina+cosa=15,平方得,1+2sinacosa=125,∴2sinacosa=-2425<0

∵a是三角形内角

∴只有cosa<0

∴π2<a<π,sina-cosa>0

由sina-cosa

=(sina+cosa)2

=1-2sinacosa

=1+2425=75

及sina-cosa=75,联立,得:sina=45,cosa=-35,∴tana=sinacosa=-43

【习题精选】

一、选择题

1已知sina=m(|m|<1),π2<a<3π2,那么tana=。

A.m1-m2

B.-m1-m2

C.±m1-m2

D.±1-m2m

2已知tana=3,π<a<3π2,那么cosa-sina的值是。

A.-1+32

B.-1+32

C.1-32

D.1+32

3若θ为锐角且cosθ-secθ=-2,则cosθ+cecθ的值为。

A.22B.6

C.6D.4

4若角a的终边落在直线x+y=0上,则sina1-sin2a+1-cos2acosa的值等于。

A.2B.-2C.-2或2D.0

5已知sinθ=m-3m+5,cosθ=4-2mm+5,其中π2<θ<π,则实数m的取值范围是。

A.3<m<9B.-5<m<9

C.m=0或m=8D.m=8

二、填空题

6若θ是锐角,sinθ-cosθ=12,则sin3θ-cos3θ=。

7设ctgx=2,则2cosx-4sinx5cosx+3sinx=,3sin2x-4cos2x=。

8已知tana=2aba2-b2,

其中a>b>0,a∈0,π2,则sina=。

9已知cosa1+sina=-12,则cosasina-1=。

10y=1cosa1+tan2a+2tanasec2a-1的值域为。

三、解答题

11已知sina=m2-1m2+1(m>1),求cosa与tana的值。

12已知tana-ctga=14,求tan3a-ctg3a的值。

13已知sina+cosasina-cosa=2,求sinacosa的值。

14(1)若3sina+5cosa2sina-7cosa=111,求tana;(2)若tana=3,求sin2a-sinacosa+2cos2a的值。

15若1+tana1-tana=3+22,求(sina+cosa)2-1ctga-sinacosa的值。

16求证:(1)tan2a-ctg2asin2a-cos2a=sec2a+csc2a;(2)设f(n)=cos2a+sinna(n∈N+),则2f(6)-3f(4)+1=0。

【参考答案】

一、选择题

1B2B3A4D5D

二、填空题

6111670,-135

82aba2+b2

9210-3,-1,1,3

三、解答题

11a为第一象限时,cosa=2mm2+1,tana=m2-12m;a为第二象限时,cosa=-2mm2+1,tana=1-m22m。

124964。13310。

14(1)-2;(2)45。

151提示:求出tanθ=22后代入求值。

16(1)提示:证明左边=右边;(2)略。

同类推荐
  • 大学生体育与健康教育理论教程

    大学生体育与健康教育理论教程

    本书阐述了大学生应从哪些方面入手锻炼身体,才能达到健康的目的。
  • 阅读中华国粹-青少年应该知道的-中国象棋

    阅读中华国粹-青少年应该知道的-中国象棋

    《阅读中华国粹》是一部记录中华国粹经典、普及中华文明的读物,又是一部兼具严肃性和权威性的中华文化典藏之作,可以说是学术性与普及性结合。《阅读中华国粹:青少年应该知道的中国象棋》为其中一册,内容包括认识中国象棋、中国象棋的起源与发展演变、中国象棋常识、著名棋人、中国象棋的文化内涵等。《阅读中华国粹:青少年应该知道的中国象棋》可以说是图文并茂,极有吸引力。同时文字流畅,饶有情趣。
  • 优秀教师教与学的启示

    优秀教师教与学的启示

    本书是“中小学教师教学丛书”中的第十九册,本书通过多种多样的形式,大量生动形象、多学科的实践案例,对教师在教与学方面进行总结分析,从而得到更全面的启发,本书将知识性、趣味性与可操作性很好地结合在一起,可谓各阶层教师的必备良书。
  • 荷塘月色(部编版语文教材配套阅读名著书系)

    荷塘月色(部编版语文教材配套阅读名著书系)

    朱自清著的《荷塘月色(精)/朱自清小全集》收录了朱自清先生的《春》《匆匆》《荷塘月色》《背影》等名篇。既有抒情写景的关文,绘景状物的游记,也有真挚感人的回忆。其文风细腻委婉,语言精雕细琢,构思新颖别致,创造了一种情趣之美、景趣之美、温和之美,堪称中国白话美文的典范。
  • 我是猫(部编版语文教材配套阅读名著书系)

    我是猫(部编版语文教材配套阅读名著书系)

    《我是猫》是夏目漱石的代表作。小说以一只猫的视角,观察并评述身为中学教师的主人苦沙弥和他的朋友们的日常生活。小说中的猫语言幽默机智,妙语连珠,作者借其口嘲笑了明治社会矢目识分子空虚的精神世界,揭露了金田等资产阶级及其帮凶的势利、粗鄙、凶残的本性。全书构思灵巧,手法夸张,具有鲜明的艺术特色。
热门推荐
  • 一切从成为提督开始

    一切从成为提督开始

    “海滩?我不是去找太太了吗?”“轰!”“我去?那是炮击?!怎么感觉海面上的那玩意有些眼熟啊?”“等等,深海驱逐?!我真的穿越舰娘世界了?”天空中出现了飞机的轰鸣声...这是某人为了想要见太太一面而开始的说走就走的旅程,然而意外遇上风暴后穿越到舰娘世界的旅程...
  • 一梦忆韶华

    一梦忆韶华

    一个心愿带来了一场韶华旅程。这,是梦境还是现实呢?白忆安因十八岁的愿望来了一场韶华旅程,她将在这场旅程中弥补她的遗憾,并收获更多未曾预料的惊喜。
  • 末世之希望之光

    末世之希望之光

    来自外太空的R病毒降临地球,导致占据宇宙霸主地位的暗能量大量入侵地球。R病毒的肆虐,暗能量的催化,使得安静平和的地球,进入了超级进化的模式。感染R病毒变成丧尸的人类与动植物与感染R病毒变强的人类与动植物,在暗能量的催化下,逐步登上世界的舞台。史前遗迹在暗能量肆虐的情况下逐步浮出水面。异能,丧尸,,变异动植物,超级生物,远古怪兽等一一登场。一个新的时代悄然来临。且看一个平凡的人如何在这场超级变革中,寻找到那一点希望之光!
  • 魔女大人请留步

    魔女大人请留步

    她是异次元的魔女,没有实体只能寄生。浪迹时空千万年,经历无数次转生。她渴望温度,怨恨世界的冷漠。他,表面简单实际复杂,时刻在她身边制造恶作剧。让冷情的她无奈的翻着白眼,手指苍天:老天,收了这个妖孽吧!
  • 一代崛起

    一代崛起

    阿木穿了。又被系统绑定了。开始:系统:"宿主,您好,作为大佬培养系统,我们致力于培养新一代人才而努力,希望与您相处愉快"后来:系统:"宿主,666,为你疯,为你狂,为你哐哐撞大墙"…
  • 在凌乱时空中遇见

    在凌乱时空中遇见

    女主意外穿越遇上了自己的真命天子,后来发现真命天子身份特殊,一连串谜团等着她来解开……
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 校园花开又一年

    校园花开又一年

    郑铭昶出生于农村,家境贫困,母亲患有食道癌。他高考发挥失常,被当地的盛东师专中文系录取。在盛东师专三年,郑铭昶经历了学习、生活、爱情、友情带给他的苦与乐、悲与喜……
  • 和我恋个爱怎么样

    和我恋个爱怎么样

    这场恋爱开始于奶茶店门口的惊鸿一瞥,怎么办?我好喜欢那个男生。没事,我可以写情书。可是~他从来都不看女生的情书。糟糕!那要怎么办?什么?这么容易就成功了!笨蛋!你不知道他也喜欢你吗?
  • 永恒幻T

    永恒幻T

    持续千年的恩怨是谁在主使?两位神的对决会引发怎样的结果?突如其来的副本系统是自然发展的形成还是人为创造的结果?为何最强的技魔人一族能甘愿屈居在下?使用同一个操作系统在这个世界是再自然不过的事情,打怪,升级,创造,一个技能毁天灭地,因为系统,世界繁荣,因为系统,世界破坏。谁是最终的敌人?谁又是拯救世界,解决各族矛盾的人?