登陆注册
43618400000031

第31章 欧姆定律

I=U/R

是欧姆定律的数学表达式,这是物理学中的一个最重要、最普遍的电流定律。这个给人以和谐感觉的数学表达式是如此简单明了,它表明:

导体中的电流强度I和它两端的电压U成正比,跟它的电阻R成反比。这个以欧姆的名字命名的电流定律发表于1827年。

在我们今天看来,这个定律是如此简单,然而它的发现过程却饱含了发现者欧姆的无数心血。在欧姆那个时代,电流强度、电压等概念都尚不清楚,特别是电阻的概念还未形成,测量的仪器也很简陋,根本无法对它们进行十分精密的测量。在欧姆的整个研究过程中,也几乎没有机会跟他那个时代的其他物理学家进行交流,欧姆定律的发现完全是独立进行的,欧姆历尽种种艰辛,经受了一个又一个的挫折,最终,他的发现得到了科学界的普遍承认,开始被人们所接受。由此,欧姆荣获伦敦皇家学会科普利金质奖章,被誉为“天才的发现者”。

1787年5月16日,欧姆诞生于德国巴伐利亚州的埃尔兰根。欧姆的父亲是个技术熟练的锁匠,十分喜爱哲学和数学。在父亲的熏陶和良好的启蒙教育下,欧姆从小就养成了认真读书,喜欢独立思考的好习惯,同时受到有关机械技能的训练,为他日后自制仪器,进行科学研究打下了良好的基础。

欧姆对学习一丝不苟,喜欢刨根问底地提问题。有一次,欧姆读一本书时,发现其中有些内容和其他的书不一样,就去向父亲讨教,父亲也未能说清为什么。为了搞清楚,他去翻阅了许多书,并仔细琢磨,直到最后把这个问题弄明白为止。

中学毕业后,欧姆以优异的成绩考入埃尔兰根大学,并获得了博士学位。

在大学学习期间,欧姆就对电学产生了浓厚的兴趣,开始钻研有关电学的理论。

大学毕业后,欧姆先后在几所中学任教,教过数学、物理、拉丁语等课程。1811年至1812年,欧姆应母校的聘请,回埃尔兰根大学任教。后来,他又被聘为科隆大学预科的讲师,讲授数学和物理学。欧姆深入浅出的讲解,雄辩的口才,使他的课深受学生欢迎,在学生中享有很高的威望。1817年,欧姆被提升为科隆大学理工学院数学物理系主任。自1820年起,他开始系统地研究电学理论。

欧姆的研究工作是在十分困难的条件下进行的。一方面,他要完成繁忙的教学任务,另一方面,当时的图书资料和测量仪器都很缺乏。但是欧姆毫不畏缩,他利用教学工作之余,自己动手设计和制造仪器进行电流试验。

当时,在电的研究中,科学家们隐约地感觉到电流有一些神秘的规律,但由于没有一种稳定的电源,也没有一种较精确的测量电流强度的仪器,致使探索电流规律的工作十分艰难。

欧姆进行电流试验,碰到的第一个难题就是如何测量电流的强度。1799年,意大利物理学家伏打发明了伏打电池,它为科学家们提供了能产生持续电流的电源。欧姆起初用伏打电池作为电源,但由于当时技术水平较低,伏打电池很容易极化,因而测量很不稳定。1821年,德国物理学家施威格利用电流的磁效应发明了检流计。这种仪器主要是用来检验电流的有无。从施威格的检流计中,欧姆受到启发,他把电流的磁效应与库仑扭秤法巧妙地结合起来,创造性地设计出一个电流扭力秤。

欧姆用扭力秤来测量电流所产生的磁场对磁针的作用力矩,以此来确定电流强度。从初步的实验中,欧姆发现电流对磁针的作用力与导线的长度有关。为了确定它们之间的定量关系,欧姆做了反复的实验。

欧姆将磁针的中点用金属丝悬挂起来,使磁针平行地位于导线的上方。

当导线通有电流时,电流的磁场使磁针偏转。若将金属丝扭转,磁针便重新返回原来的位置。因为磁针所在处,直线电流所产生的磁感应的强度正比于导线中的电流强度。它对磁针的作用力矩等于磁针处的磁感应强度与磁针磁矩的乘积,所以扭力秤中金属丝的扭转角正比于导线中的电流强度。根据扭转角的大小,欧姆就能相对地比较不同的电流强度。

在欧姆定律发现之前,还没有电阻的概念。但是,已经有一些科学家对金属的导电率进行了研究。1821年,英国化学家戴维发现:对于同一种金属导线来说,它的导电率与其单位长度的质量成正比。1825年,法国物理学家贝克勒尔对同种金属制成的,粗细和长度不同的导线进行了测试,发现当它们的长度之比等于其横截面面积之比时,其“导电力”相等。

欧姆选择了一组截面积相同,长度不同的铜导线作为外电路进行了实验。从实验的数据中,欧姆发现:当导线的长度与其横截面面积成比例时,它们的导电率的确相等,而被测导线的长度越长,电流扭力秤的偏转角越小,两者之间则存在着反比的关系。经过多次反复实验,欧姆发现了检流计指针的偏转量和导体长度、串接材料的电阻率以及与所加电压之间的关系。1825年,他总结了自己的实验,撰写并发表了题为《金属导电规律的初步探索》一文。

在论文排版付印过程中,欧姆发现论文中的公式与试验结果并不完全一样。于是他立即与出版商联系,要求更改。由于论文大部分已印好,出版商不肯重印,只同意另外补发一篇短文来纠正论文中的错误。欧姆没办法,只得勉强接受这个建议。论文和短文同时发表了,短文补充了导体趋近无穷长时,流经电路的电流趋近于零的事实。

后来,欧姆发现论文中推出错误公式的原因是由于伏打电池有问题,使电源电压不够稳定。后来,他改用了塞贝克的温差电池作为电源,保证了电源的稳定性。欧姆继续进行试验,终于发现电流通过一根均匀导线时,其电势降落是一个常数。

1826年,欧姆的第二篇论文《金属导电规律的确定及伏打电池和施威格检流计的理论要点》发表了。第二年,又发表了第三篇论文,题目是《伽伐尼电池的数学论述》,终于总结出了欧姆定律。欧姆定律从发表至今,已170余年了,无数的实践都证明了它的正确性,它已成为现代电学和电工学最基本的规律之一。

然而在当时,欧姆的研究公布后,不仅没有立即引起科学界的重视,甚至科学学会根本不同意他的见解,理由是欧姆的定律公式太简单了。他们片面地认为第一流科学家都未能解决的问题不会如此简单。有些人甚至对欧姆进行了公开的指责,把欧姆定律斥之为纯属空洞的编造,没有任何一点事实基础。德国的一位物理学家在文章中攻击欧姆的著作说:“以虔诚眼光看待世界的人不要去读这本书,因为它纯然是不可置信的欺骗,它的惟一的目的是要亵渎自然的尊严。”

这些不公正的评价,使欧姆深深地感到从事科学事业的艰难。他含辛茹苦,熬过了多少不眠之夜,无数次的反复试验论证,结果竟遭到如此攻击,甚至有些人都不敢和他来往了。在这段处境艰难的日子里,欧姆辞去了科隆大学数学物理系主任的职务,前往柏林,在柏林军事学院任教师,每周上三次数学课。

然而,在责难和诽谤中欧姆并不气馁,1829年3月30日写信给国王路德维希一世陈述他的发现的重要性和正确性。国王把信转给了巴伐利亚科学院,仍未引起重视。欧姆在给朋友的信中诉苦道:“《伽伐尼电路》的诞生已经给我带来了巨大的痛苦,我真抱怨它生不逢时,因为深居朝廷的人学识浅薄,他们不能理解它的母亲的真实感情。”

欧姆完全相信自己得出的公式是正确的,并确信科学家们最终会接受这一定律。真理终归是真理,欧姆的这一发现被人们逐渐认识并接受了。德国最早承认欧姆定律的是施威格,欧姆的大部分论文都发表在施威格主办的《化学和物理杂志》上。他在给欧姆的信中,热情地鼓励说:“请你相信,在乌云和尘埃后面的真理之光最终会透射出来,并含笑驱散它们。”

后来,一些科学家开始注意欧姆定律。德国科学家波根多在试验中重复了欧姆的研究过程,得出了和欧姆相同的结果,波根多再次重复了试验,结果仍相同。这使波根多相信欧姆发现的定律是正确的。1831年,波根多发表文章肯定了欧姆的研究成果。随后,俄国、英国、美国的一些著名科学家都相继重复了欧姆的实验,都证明了欧姆研究成果的正确性。

真正“驱散乌云和尘埃”的“风暴”来自英国。1841年,即欧姆发表第一篇论文后的第16年,英国伦敦皇家学会为了表彰欧姆的杰出贡献,授予他科普利金质奖章,这是当时科学界的最高荣誉,从此,欧姆定律开始被人们接受。

1845年,欧姆当选为巴伐利亚科学院院士。1849年,年已62岁的欧姆终于实现了自己年轻时的抱负,担任慕尼黑大学教授,并亲自在慕尼黑大学讲授物理学。1854年,欧姆在德国曼纳希逝世。一颗灿烂的巨星陨落了,但他的伟绩长存。他的名字被定为电阻的单位,他发现的定律被称为欧姆定律。

同类推荐
  • 探索未知-话说材料

    探索未知-话说材料

    探索未知,追求新知,创造未来。本丛书包括:奇特的地理现象、遗传简介、生活物理现象解读、奥妙无穷的海洋、认识微生物、数学经典题、垃圾与环境、湛蓝浩瀚四大洋、生物的行为、漫谈电化学、数学古堡探险、中国的世界文化遗产、中国古代物理知识、中国三大三角洲、中国的地理风情、多姿的中国地形、认识少数民族医学、悠悠的中国河流等书籍。
  • 青少年应该知道的太阳能

    青少年应该知道的太阳能

    太阳是万物生长的根本,太阳所发出时能量与我们的生活息息相关。夏天,我们承接太阳的炎热;冬天,我们感受太阳的温暖。对于这一现象,人们早已司空见惯,不足为奇了。外出旅游,跋山涉水,一些随身携带的必备品必不可少,充分享受着大自然恩宠的同时,荒郊野外的我们如何给这些必备品充电?太阳能的利用会让我们灿烂的笑容留到最后。人类能源需求不断增加,地球资源告急,作为可再生能源的,太阳能便成为了人类探讨的世界性课题。但是若有人问起,太阳能到底是什么?我们又是如何利用它的呢?青少年朋友们不一定能答得上来。那么,请跟随我慢慢地进入这个神奇的太阳能世界吧!
  • 新编科技知识全书:动物之美与人类情感

    新编科技知识全书:动物之美与人类情感

    动物分为哺乳动物,爬行动物和昆虫等。最古老的哺乳动物是一种体型较小、长约12厘米、类似鼩鼱晴的动物,接近于今天的单孔类,它们最早出现在距今约2.2亿年的三叠纪。它们是3亿年前被称为单孔类爬行动物的后裔。这些原始的哺乳动物在侏罗纪和白垩纪(2.08亿年前至6500万年前)进化为不同的类群。绝大多数早期哺乳动物是肉食性的,但也有一些以植物为食,如鼠、河狸等生活在树上的多节类动物。今天的有袋类、食虫类和灵长类动物最早出现在白垩纪(1.45亿年前至6500万年前)。恐龙在白垩纪末期灭绝后,这些更加现代的哺乳动物扩散至每一块大陆,进化为数以千计的新物种。
  • 科学我知道——Why物理

    科学我知道——Why物理

    本书主要讲述的是:光学研究的内容包括哪些、我国古代对光是怎样认识的、古希腊对光学有哪些贡献等。
  • 广袤绮丽的地理(科普知识大博览)

    广袤绮丽的地理(科普知识大博览)

    本书具有如下特点:1.针对性强。针对青少年的实际需要,选取的均是青少年感兴趣又并未深入了解的信息。2.编排科学。在学科类别的设置上,内容的选择安排上,都有相当的科学性。3.难易适中。既不过于艰深,也不流于肤浅。本书编撰更得到了众多学科专家、学者的高度重视和具体指导。他们的辛劳从书稿的框架结构到内容选择,从知识主题的阐述到分门别类的归集,从编写中的问题争议到书稿最后的审议等全部过程,从而使本书具有很高的权威性、知识性和普及性。
热门推荐
  • 电影世界翻身之旅

    电影世界翻身之旅

    诸天万界,无限宇宙......在临死之际偶然间获得穿越电影世界能力的冼余,将会踏上怎样的旅途?《复仇者联盟》中他该怎样面对那宇宙中的各种强敌?《海贼王》里他该如何抉择自己的阵营?《死神的阴谋》中如何躲避死神的各种死亡灾难?《黑瞳》的世界里又如何对付倾入人间的恶魔?在这穿越的背后是否存在着什么惊天的秘密?跟上主角的脚步,一同去寻找那最终的答案书友交流群324806365
  • 冥王妃成长记

    冥王妃成长记

    在一个小城中,有一家店,只待有缘人的到来
  • 欧皇崛起

    欧皇崛起

    "(本书为《德意志雇佣兵之王》的续集,为故事发展的第二阶段。)马林花了六年时间,从一名被赶出家门的穷流浪骑士,奋斗成为伯国的伯爵,并建立了赫赫有名的“黑水公司”,麾下有2万强悍的雇佣兵,成为雇佣兵中的王者。然而,对于一名博学多才的学霸级穿越者而言,成为雇佣兵界的王者,显然不是终点。于是乎,马林带着武装到牙齿的强大雇佣军,在全欧洲,掀起了腥风血雨,开始了欧皇崛起模式。最终,北海成了被马林所有的领土包围的“内海”。秘鲁和墨西哥的金银,智利的硝石,加勒比海岛的蔗糖、香料,南非的黄金……源源不断地运回欧洲,为新的帝国增添营养……"
  • 倾杯奈何之女帝嫁到

    倾杯奈何之女帝嫁到

    乾坤逆转,女帝重生,预言将不复存在。沦落江湖,任人鱼肉,简直荒天下之大谬。曾经的爱人,止于昨日。那个被遗忘在记忆深渊的人,只愿她一世长安。大婚庆典之上,满朝群臣庆贺。红色囍袍之下,新人闪亮登场。——女帝手握宝剑,架在某男的脖子之上,受群臣瞩目。“为什么?”“因为我并非你的良人……”“良人……”1v1
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 精灵仙露

    精灵仙露

    未知世界,万物有灵。热血是超级战士的本能,唯有不停战斗,才能找到心之所向。
  • 左手疼爱右手管教:好父母要懂得在爱中管教

    左手疼爱右手管教:好父母要懂得在爱中管教

    如今的大多数父母都对自己的孩子疼爱有加,而疏于管教。疼爱孩子是没有错的,而且对于孩子的健康成长来说是必不可少的,但是疼爱容易转变为溺爱,成为一种对孩子的伤害。而管教孩子也是不可缺少的,但过分管教孩子却容易使孩子形成叛逆孤僻的心理。这两种情况应该怎样解决呢?那就需要父母“左手疼爱,右手管教”。《左手疼爱 右手管教:好父母要懂得在爱中管教》一书正是从疼爱孩子与管教孩子这两个方面详细叙述了父母应该如何在对孩子疼爱的过程中管教好孩子,从而使父母能够有针对性地对孩子进行疼爱与管教。如此一来,就能够使孩子健康、快乐、卓越地成长。《左手疼爱 右手管教:好父母要懂得在爱中管教》由李建芳编写。
  • 52hz的鲸鱼

    52hz的鲸鱼

    1989年,科学家利用声波探测仪发现了一头特殊的鲸鱼,它的声音是不同于其它鲸鱼的52hz,所以即使它跨越了几个大洋,依旧无法追寻到自己的同类。
  • 帝君强势宠:废材逆乾坤

    帝君强势宠:废材逆乾坤

    翻手为云覆手为雨的女王,一朝穿越至柳叶公国最无用的骁勇大将军府上的废材嫡出大小姐身上,废材??她叱咤一生,手下骁将无数,历史里就没“废材”二字。奈何碰上霸道强横的他,她怒他忍,她闹他笑,霸道帝王为数不多的追妞心得全部都用在她身上了,终于成功抱得美人归,且看他们如何上演一场“双剑合璧”的巅峰爱恋。
  • 不过一方

    不过一方

    就是一篇篇小故事,我喜欢这一切。不管是玄幻还是其他,只想让我这些故事,送给大家。