有人对当今浩瀚的材料世界进行过粗略统计,70年代登记的新老材料达到25万种,到1980年登记的材料总和已有36万种,并且每年还以5%的增长率增加。如果把形形色色的材料按化学组成分类,可以分为金属材料、无机非金属材料和有机高分子材料三大类。它们鼎足而立,构成了材料世界的“三大家族”。如果从使用角度看,不论上面哪一种材料,都可以归纳为两大类:一类叫做结构材料,主要是利用的是它们的强度、韧性、硬度、弹性等机械性能;另一类是功能材料,主要利用的是它们所具有的电、光、磁、热等功能和物理效应。当然,上述各种材料之间也存在着交叉关系。例如,复合材料就把金属和非金属结合了起来;非晶态金属则介于金属与非金属之间。此外,还有按材料的用途分类的,如建筑材料、耐火材料、电工材料、光学材料、感光材料等;按材料的物理效应与功能分类,如电压材料、热电材料、电光材料、声光材料、激光材料等等。
综合以上分类方法和材料使用状况。让我们到这广阔的材料世界里去漫游一番吧!
材料世界的三大领域
以材料作为划分时代的标志,已经为人们所熟悉和接受,因为这种划分正确地反映了人类社会的生产力发展水平,另一方面也反映出材料举足轻重的意义。在现代科学技术中,材料科学已经和能源科学、信息科学并列为三大支柱。值得注意的是,无论能源技术还是信息技术对于材料的依赖,都变得越来越突出。
现代科学和工业中使用的材料极为广泛,品种繁多,要想把它们严格分类已很困难。过去的教科书习惯把材料划分为金属材料和非金属材料两大类,然而这种划分材料的方法越来越显得不合理,因为不少的新型材料是跨越两者之间的。近年来出现了材料三大领域的提法,即把材料划分为金属材料、无机非金属材料和有机高分子材料。尽管如此,在继续细分这些材料的小类和决定某些材料的归处时,仍出现不少困难。例如复合材料就是一个例子,它是由一种主要原料(基体)和另一种或几种材料(增强材料)组成的;基体和增强材料都可能是金属、有机高分子或无机非金属中任何一种,究竟如何给它们分类呢?有人建议把它们单独提出来,另立门户。
总之,任何一种分类方法都只能看成是暂时的、不完善的,这也反映出材料世界的日益繁荣和多样化。
工业部门是生产各种材料的基地,同时也是使用各种材料的最大用户。
这些部门中的原子能、航空与航天、中子、海洋开发的迅速发展,对材料提出许多更新的、更严的要求,天然材料和靠天然原料制备的材料,已经不能满足人们的需要了。因此所谓“尖端材料”或“极限材料”的研究成为重点。
举例来说,原子能工业要求耐辐射和耐腐蚀的包套材料;热核聚变反应堆需要优异的激光工作物质来实现点火;新型飞机和航天器要求强度极高、重量极轻的结构材料。目前正在研究一种比木材还轻,在水中也不下沉的镁锂合金。海洋开发要求耐高压、耐腐蚀的潜水壳体材料,也许新型金属玻璃能够满足需要。凡此种种,都可以划入“尖端材料”的研究领域。
富有的传统废材料
木材是植物的“产品”。乔木和灌木的祖先是羊齿科植物,这种植物的历史可追溯到泥盆纪。约在二亿五千万年前的二迭纪,这种原始羊齿科植物发展为针叶树,直到一亿年前的白垩纪才形成宽叶树。
古代人们最初是不经加工就利用树木取得食物,后来,又把木棒和石头结合起来(石斧)以及把手杖和石头结合起来(矛),从而首次制造了工具。
随着学会用火,木材在数千年内成为人类最重要的能源。因此,人类应用木材起始于获取能源。约在新石器向中石器时代过渡时期(约一万年前),人类学会了加工木材,人类学会用木材造船和修筑简单的住所以及制造各种家庭用具。直到最近三、四千年,木材作为原材料应用才发展到目前的状况。
现在我们在技术和艺术活动中到处可见木材。
木材虽密实,但仍是一种孔隙性有机材料。木材由其细胞构成,细胞壁内的空腔中充有多种不同物质。木材的原始形式,即未经加工的形式,称为原木。木材都是指砍伐后的、长度厚度和质量不同的树木。可见木材既是原料又是材料。木材主要产在经济林中,在一定程度上也来自森林之外(公路、通道)。大陆的三分之一有森林覆盖,当然其中有50%的面积不易通行。约有35%的森林面积未加利用,也就是说这种森林的生长无人工影响。世界森林面积只有11%左右属于经济林。人类付出力量经营经济林,以获得木材。
木材砍伐分两个阶段,其中又要区别初期利用和最终利用。按森林建设和保障质量的要求,在种植了15~30年以后要进行初次砍伐。以后每隔5~10年重复进行(使森林变稀,初期利用)。到树木完全成熟(不同树种的成熟期介于80~140年之间)为止,整个森林面积上生产的全部木材有40%到60%已经砍伐进行初期利用,其中大部分为较细的木材品种,然后才将余留的树木伐掉(较粗的木材品种)。
从物理上看,木材并不密实,含有大大小小的空腔,因此称之为孔隙体。
细胞壁的空腔(毛细管)比细胞的空腔小得多。并在一定程度上充填有水或水汽混合物。木材的这种水分对其强度影响很大。木材的体积密度为300~900千克/米3,软木与硬木的界限约为550千克/米3,如不考虑空腔,即所谓“净密度”,对木纤维是1600千克/米3,对木质素是1400千克/米3,对所有树种,可用的平均值为1500千克/米3。木材像任何孔隙物体一样,吸收空气中的水蒸汽,这就是说有吸湿性。随着空气的温度及湿度的不同,木材总是具有相应的湿度,也就是说,木材和环境空气间总是达到吸湿平衡状态。空气相对湿度为20%时,木材经过一段时间的适应后,湿度达到11%。木材吸水膨胀,反之则收缩。俗话说这是木材在“干活”。
其轴向上的膨胀和收缩率大多降低0.5%,故可以忽略不计;而切向上的长度变化(松树为8%)几乎总是经向上的两倍,但膨胀和收缩只发生在湿度从0到30%这个范围内,之后就达到所谓纤维饱和状态,停止了这个过程,水分继续增加而膨胀不会继续增加。木材的热延伸性意义不大。木材的磁性能也相当有利,因为用木材制作天线的塔架时,它几乎不影响天线的发射电磁场。木材的声学特性与其他材料有明显区别,因此在制作乐器方面优先得到采用。最典型的例子是声阻力和隔声能力比金属高十倍左右。木材也具有良好的弹性。如果木梁的负荷处于虎克定律范围而距离破断负荷足够远,那么在当负荷解除时,变形几乎完全消失,这是典型的弹性材料性质。当然,木材也像其他材料那样具有屈服现象,即在一定负荷下,变形与时间有关。
木材的强度(在毛密度条件下测出)是突出的,然而,木材允许负荷仅为破断力的10%左右,所有强度特性与木材的水分相关,水分增加,强度下降。例如,水分为50%时,强度为初始值的50%以下。
木材缺点中最甚者,是容易受到寄生的菌类及寄生虫的侵蚀,但可以用某些药剂和其他方法保护木材。
木材的质量和品种的不同,每立方米的价格也不同,我们决不能忽视。
森林除了有生产木材的功能以外,还有其他功能。它们对国家文化、环保、水土保护和人类休养的重要性是难以用数字表达的。
2005年,我们的地球上有24亿公亩的有用森林(全球森林面积为39.52亿公顷),可供利用的木材约有3000亿立方米,其中每年约采伐30亿立方米。
到2000年,全世界每年的木材消耗量将从目前的28亿立方米左右增加到近50亿立方米。
从世界范围来看,在天然原料的使用数量方面,木材仅次于煤和石油而居第三位,因而在整个原料经济中占有重要地位。木材同煤、石油及另外一些天然原料(金属矿、矿物)相比,有一个根本性的区别,就是它作为天然高分子聚合物能够不断生长,从而能持久地供人使用。由于气候、供水设施、国家文明及其他原因,地球上可居住地区的森林必须保持一定面积,因此木材生产将持久不断。但木材产量也不能任意提高,因为一棵树从幼树到可砍伐要生长80~140年,而人烟稀少或无人地区的砍伐在经济方面也有一定限度。
谨慎而节约地使用材料的要求无疑也适用于木材,何况木材并不是取之不尽的。根据预测,木材必然发展为化学燃料。这种趋势可能会使木材这种“传统”的原材料到本世纪末在材料经济中的地位发生质的变化。
经济发展中重要的材料
在我们日常生活中,经常谈到金属或金属材料。众所周知,铁、铜、铝、金和银是金属,钢是一种金属材料,而且,金属和金属材料的种类繁多,历史悠久。金属由于反射率高,因而有光泽,几乎可以说只有金属才有光泽。
金属的重要特征是具有晶体结构。除水银之外,在室温下所有金属均为固体结晶状态。一提到金属,人们就会想到,它的高强度和良好变形能力的特性。众所周知,金属具有良好的导电性和导热性。腐蚀现象是金属和金属材料发生化学反应的一种标志。换句话说,这是其不利因素。
比重是划分金属和金属材料的一个重要标准。轻金属和轻金属合金,比重一般低于4.4克每立方厘米;重金属和重金属合金,比重高于4.4克每立方厘米,工业中最重要的轻金属是铝、镁及其合金;最重要的重金属包括铜、铅、锌和锡及以这些金属为基础所组成的合金。在二者之间,还有钛,一般把钛划归轻金属。
虽然在古代已经使用金、银、汞和铅,到中世纪又发现了许多元素,但直到18世纪中叶才开始对金属进行科学研究。在这一时期,又发现了许多具有金属性质的元素。例如,铂、镍、锰、钨和铬。在1800和1850年间,才首次制取了镁、镉及大部分碱金属和碱土金属,如铝、铍。到19世纪末,发现了钛、铯、铷和镭。在原子衰变过程中也产生新的元素。当前,我们已经知道了105种元素。
19世纪的工业高涨促进了冶金和制造技术的迅速发展,金属与金属材料产量越来越多,而且可加工成可以利用的器件。这时,虽然已能利用最现代化的科学知识和仪器仪表,但这种发展还不能认为是已进入真正科学研究的阶段。只是在最近,材料科学才迅速发展,在金属和金属材料中有许多重要发现。当前,在高度工业化的国家,大约已生产和加工了500种用量较大的金属材料,此时,金属已成为国民经济中头等重要的材料和工业材料的“主力”。
现代工业生产中,钢铁占有很重要的地位。钢铁产量往往是衡量一个国家工业水平和生产力水平的主要标志。目前,在整个结构材料中,钢铁占70%左右。由于它具有良好的物理和机械性能,资源丰富,价格低廉,并且工艺性能也很好,因此应用非常广泛。
钢铁虽然都是铁和碳组成的合金,但是含碳量不同,它们的“性格”有很大的差别。工业上以含碳量多少为标准,把钢铁分为生铁、纯铁和钢三种。
钢铁按照组成元素分为碳素钢和合金钢;按用途可分为结构钢、工具钢和特种钢。结构钢具有一定的强度和韧性,用途最广,一般用作结构零件,如用来制造汽车、轮船、钢轨、机械、油田井架、电视塔等等;工具钢的强度高、耐磨性好,大量用于机械制造,用工具钢做的刀具,可像切豆腐那样切削一般金属材料。特种钢按用途不同可分为磁性钢、耐磨钢、高温合金钢、低温钢、精密合金钢、电工钢等等。
发展现代化工业技术不仅离不开钢铁,而且还对钢铁材料提出了更苛刻的要求。例如,海洋工程用的钢材,需要很高的强度、韧性和耐海水腐蚀的能力;大跨度桥梁需要采用强度和韧性都很好的钢铁材料;发展航空航天技术则要求材料重量轻、强度高。对于这些特殊要求,一般碳钢无能为力,只有合金钢才能担负起这方面的重任。所谓合金钢就是在钢中另外加入铬、镍、钨、钛和钒等化学元素,它们可以使钢材增加某一特殊性能。常用的合金钢有合金结构钢、弹簧钢、高速工具钢、滚珠轴承钢、不锈钢等。例如,高压容器要用合金结构钢制造;不锈钢韧性好、耐腐蚀,主要用于化工设备。
20世纪末,工业材料虽然仍以钢铁为主,但是有一部分已被高分子合成材料所代替。同时,钢材在性能上也会有很大提高,除了钢材合金以外,将通过精炼技术、控制结晶技术、控制轧制技术,表面处理技术和热处理技术的综合应用来提高钢材性能,强度一般可望比现在提高一至二倍。各种复合钢材、预硬化钢材、异型断面钢材,彩色不锈钢将被大量采用;成百上千种性能近似的钢材由几种甚至几千种钢号所代替;钢材品种将更规范化、系列化,各国通用的钢材牌号也将取得一致;钢材的利用率将由现在的50%左右提高到80%,使用会更加合理。
自然界共有83种金属元素,通常按外观颜色分为黑色和有色金属两大类。黑色金属包括铁、锰、铬和它们的合金,其余80种金属都可统称为有色金属。有色金属也是重要的金属材料,它是现代化工业的生力军。常用的有色金属有铝、铜、钛、镁、镍、钴、钼、铅、锡、锌、金、银和铂等,它们的消耗量虽只占金属材料消耗量的5%,但具有许多特殊的优良性能,是别的材料难以代替的。例如,它们的导电、导热性好,比重小,化学性质稳定,耐热、耐腐蚀,工艺性好等等,是电气、机械、化工、电子、轻工、仪表、航天工业不可缺少的材料。
许多人以为铁是地壳中最多的金属,其实地壳中最多的金属是铝,其次才是铁。铝占地壳总重量的7.45%,比铁多将近一倍。现在,世界铝的产量已经超过铜,仅次于钢铁。
电线、电缆材料以铝代铜为发展方向。虽然铝的导电性能比铜稍差,但是铝的比重几乎只有铜的三分之一,可以把铝线做得粗一些,以增强它的导电性能,同时,铝的价格要比铜低得多。因此,在电力工业上,铝成了铜的有力竞争者。例如,我国第一条电气化铁路——宝成铁路线上,输电线便由铝来充当。
铝的比重仅为铜的三分之一左右,今后随着节能和产品轻型化问题的突出,高强度铝作为机械产品结构材料的比重会增长较大。
值得一提的还有钛。钛在地壳元素的大家庭里排行第九,比铜、镍、铅、锌的总和还要多16倍。那么为什么长期以来给它戴上了“稀有金属”的帽子呢?这是由于笨拙的冶炼方法所造成的。钛在高温下总是和氧、碳等许多元素紧紧结合在一起,很难分离,目前,工业上还没有一种好办法直接把钛和氧分开而得到金属钛。因此,钛还被埋没着,不能大量生产。