Very different is the case with the problem: "How far the regress, which ascends from the given conditioned to the conditions, must extend"; whether I can say: "It is a regress in infinitum," or only "in indefinitum"; and whether, for example, setting out from the human beings at present alive in the world, I may ascend in the series of their ancestors, in infinitum- mr whether all that can be said is, that so far as I have proceeded, I have discovered no empirical ground for considering the series limited, so that I am justified, and indeed, compelled to search for ancestors still further back, although I am not obliged by the idea of reason to presuppose them.
My answer to this question is: "If the series is given in empirical intuition as a whole, the regress in the series of its internal conditions proceeds in infinitum; but, if only one member of the series is given, from which the regress is to proceed to absolute totality, the regress is possible only in indefinitum." For example, the division of a portion of matter given within certain limits- of a body, that is- proceeds in infinitum.For, as the condition of this whole is its part, and the condition of the part a part of the part, and so on, and as in this regress of decomposition an unconditioned indivisible member of the series of conditions is not to be found; there are no reasons or grounds in experience for stopping in the division, but, on the contrary, the more remote members of the division are actually and empirically given prior to this division.That is to say, the division proceeds to infinity.On the other hand, the series of ancestors of any given human being is not given, in its absolute totality, in any experience, and yet the regress proceeds from every genealogical member of this series to one still higher, and does not meet with any empirical limit presenting an absolutely unconditioned member of the series.But as the members of such a series are not contained in the empirical intuition of the whole, prior to the regress, this regress does not proceed to infinity, but only in indefinitum, that is, we are called upon to discover other and higher members, which are themselves always conditioned.
In neither case- the regressus in infinitum, nor the regressus in indefinitum, is the series of conditions to be considered as actually infinite in the object itself.This might be true of things in themselves, but it cannot be asserted of phenomena, which, as conditions of each other, are only given in the empirical regress itself.Hence, the question no longer is, "What is the quantity of this series of conditions in itself- is it finite or infinite?" for it is nothing in itself; but, "How is the empirical regress to be commenced, and how far ought we to proceed with it?" And here a signal distinction in the application of this rule becomes apparent.If the whole is given empirically, it is possible to recede in the series of its internal conditions to infinity.But if the whole is not given, and can only be given by and through the empirical regress, I can only say: "It is possible to infinity, to proceed to still higher conditions in the series." In the first case, I am justified in asserting that more members are empirically given in the object than Iattain to in the regress (of decomposition).In the second case, Iam justified only in saying, that I can always proceed further in the regress, because no member of the series.is given as absolutely conditioned, and thus a higher member is possible, and an inquiry with regard to it is necessary.In the one case it is necessary to find other members of the series, in the other it is necessary to inquire for others, inasmuch as experience presents no absolute limitation of the regress.For, either you do not possess a perception which absolutely limits your empirical regress, and in this case the regress cannot be regarded as complete; or, you do possess such a limitative perception, in which case it is not a part of your series (for that which limits must be distinct from that which is limited by it), and it is incumbent you to continue your regress up to this condition, and so on.
These remarks will be placed in their proper light by their application in the following section.
SECTION IX.Of the Empirical Use of the Regulative Principle of Reason with regard to the Cosmological Ideas.
We have shown that no transcendental use can be made either of the conceptions of reason or of understanding.We have shown, likewise, that the demand of absolute totality in the series of conditions in the world of sense arises from a transcendental employment of reason, resting on the opinion that phenomena are to be regarded as things in themselves.It follows that we are not required to answer the question respecting the absolute quantity of a series- whether it is in itself limited or unlimited.We are only called upon to determine how far we must proceed in the empirical regress from condition to condition, in order to discover, in conformity with the rule of reason, a full and correct answer to the questions proposed by reason itself.