高斯,德国数学家、天文学家、物理学家。1777年生于德意志一个贫苦农民家庭。
高斯是数学史上少有的天才。很多人都认为伟大的科学家和才子都出自书香门第,家里人可以对他的智力进行较早的开发。可是,高斯的出身却正好推翻了这一论断。高斯的祖父是一个朴实的德国农民,父亲也以种果树为生,母亲则是一个穷石匠的女儿。由于家贫,他的母亲在34岁时才做新娘,而他父亲这时已经40岁了。父亲根本就没有指望他能读书长学问,也根本不可能对他进行早期教育。幸运的是,高斯有一个聪明的舅舅,他是一位心灵手巧的织绸能手,虽然文化不高,但知道许多故事。这位舅舅也十分喜欢高斯,常常通过给他讲故事来教育他。
高斯的父亲整天忙于自己的事,根本没有时间照顾小高斯。只要高斯不哭,他就专心算自己的账。而小高斯则经常在旁边一声不响地看父亲算账。有一次,还在牙牙学语的高斯像往常一样聚精会神地看父亲算账。父亲一边算,一边直摇头,算来算去也算不出一个结果来,过了好久,才自言自语地报出一个结果。父亲紧缩的眉头终于舒展了,点上一支烟,深深地吸了一口,一边准备把答案写下来。可是小高斯在一旁却用小手敲击着桌子,不停地摇头,向父亲示意这个结果是不正确的,然后自己从小嘴中慢慢地说出了一个数字。
父亲感到十分惊异,儿子还不会说话,怎么会报数呢?他突然灵感一现,莫不是高斯说的是自己所计算的正确答案。于是,父亲抱着好奇的心理,重新进行演算,答案竟然真的和高斯说的一样,高斯对了!父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学了。此后,高斯的父亲发现高斯具有良好的天赋,于是决定全家省吃俭用送他去读书。
1795年10月,高斯远离家乡来到他渴望已久的哥廷根大学深造。很快,那里丰富的数学藏书深深地吸引了他。
在哥廷根大学的第一年,高斯就用代数方法解决了两千多年来对正几边形用直尺和圆规几何作图的世界性难题。同时,他还证明了单用圆规和直尺根本不可能作出正七边形、正九边形、正十一边形、正十三边形和正十四边形。也就是说,高斯用一般性的方法归纳证明哪些正多边形可以用直尺和圆规做出来,哪些做不出来。他的这种思想已经超越他所在时代的方法论水平,具有很高的创意。少年高斯的这一数学思想,将数学的方法论研究带入了一个新领域。有一天,高斯带着他正十七边形可以用几何作图的代数证明去找哥廷根大学的数学教授卡斯特请教。高斯说明来意后,卡斯特先是大吃一惊,然后哈哈大笑起来。他根本不相信一个19岁的少年能解决这道两千多年来的数学难题。
为了让卡斯特对他的证明感兴趣,高斯换了一个说法:“卡斯特教授,我曾经解出过一道十七次方的代数方程。”“年轻人,别开玩笑了。科学是神圣的,容不得半点虚假。”卡斯特一脸严肃地说。
“但这是真的。教授,我把这个十七次方程化简成了一个低次方程。”高斯冷静地答道。
“噢,那好吧,让我看看你的‘杰作’吧!”卡斯特略带怀疑、甚至嘲讽的口气说道,把高斯的手稿接了过去。
不看则罢,看了之后,卡斯特大吃一惊:这个少年太神奇了,其中的运算推理极其严密,看不出半点漏洞。卡斯特马上让高斯把证明过程重新整理,然后由他推荐到一家著名数学杂志上去发表。高斯小小的年纪就引起了世界数学界的注意,他自己也对这个发现十分得意。他在日记中写道:“这是多么干净利索、周密漂亮!我死以后,要在墓碑上镌刻一个正十七边形,以纪念我在少年时代最伟大的发现!”高斯是数学领域继欧几里德、牛顿、欧拉以后最伟大的数学家,有人称之为“数学之王”。