自从1911年发现汞的超导性以后,又先后发现20余种纯金属也具超导性,但临界温度都在0.1K-9.13K之间。为了寻找较高临界温度的超导材料,50年代初,科学家们将注意力转向合金及其化合物。1952年发现了临界温度为17K的V3Si,后又发现18K的Nb3Sn,不久又陆续发现若干铌系合金超导体。1973年发现临界温度可达23.2K的Nb3Ge,被认为是一个了不起的收获,曾激发起寻找高温超导体的热情。截止到70年代末,虽然共发现了一千种合金和化合物超导体,但具有较高临界温度,且在实际工程中得到应用的主要是铌和铌系超导体Nb3X(其中X可以是Ge,A1,Si,Ga或Sn)。其中NbTi的延展性较好,用于制成线材,是制作超导磁体的主要材料之一;Nb3Sn材质较脆,近几年通过工程研究已可用来绕制磁场的磁体;而NbN用于电子产品,纯铌则用于射频腔。
科学家们为了寻求理想的高温超导材料,在实验室里苦苦奋斗了70余年,制备的超导体最高温度也只有23.2K。使人们对高温超导的期望显得心灰意冷,好梦难圆。然而,1986年出现了历史性的新转折点。这一年,美国国际商业机器公司的米勒和贝德瑞尔茨在瑞士实验室里发现了临界温度达35K的镧钡铜氧化物陶瓷超导材料。这一振奋人心的消息于1986年4月公布后,立即引起世界上超导研究者的关注,并很快形成世界性的超导热。人们进入了在多元氧化体系中寻找高临界温度超导体的竞赛。
1987年2月,中国、日本和美国先后报导了临界温度超过氮气液化温度77.3K的超导体研制成功的消息。也就是在这一时期,高温超导进入了一个突飞猛进的发展阶段。在这个研究领域中,中国、美国和日本处于领先地位。
高温超导材料高于35K的超导材料均为金属氧化物,亦即陶瓷材料。高于77.3K的超导材料的金属中除一例外,均含金属铜,其中比较典型的是钇、钡、铜氧化物。
80年代中期以来,新发现了1300多种超导材料。
i994年1月18日美国宣布:美国能源部阿贡国立实验室和纽约专门生产超导磁铁、线圈和超低温制冷设备的IGC公司,共同研究并制作出高温超导体磁性线圈组。在液态氦的冷却下该线圈能产生2.6特斯拉强磁场,比地球磁场强7.8万倍,打破了他们去年8月以来保持的1.65特斯拉纪录。
1995年2月27日,美国IBM公司下属的沃森研究中心的科学家说,他们对高温超导机制的研究取得了重大的突破。
尽量提高超导体的温度特性,是全球科学家的竞先研究的目标。相信不远的将来,会有越来越多的超导体记录被刷新。
我国超导技术研究与开发起步于60年代。1959年研制成功氦液化器。1965年研制出第一代单芯NbTi超导体磁体。1973年进行了多芯超导线圈和各类直流与脉冲磁体的研制。1976年开始交、直流电机,磁流体发电,受控热核装置等大型超导磁体的研究。1981年以后,提出了以中小型磁体和工业应用为主的发展目标。在1986年4月公布发现35K的超导材料后,在全世界掀起的高温超导热的冲击下,为了在这个领域能站在美、日等国同一条起跑线上开展竞争,我国加强了对高温超导研究。并在朱经武教授发现钇系氧化物超导体论文发表之前,我国的超导专家就已经制造同样的钇钡铜比率为1:2:3的化合物,1987年2月我国与日本、美国几乎同一时间报道了临界温度超过氮气液化温度77.3K的超导材料研制成功的消息,表明我国在1987年的超导研究水平已进入国际先进行列。但从总体看,目前尚处于实验室研究阶段。今后国家将集中有限人力、财力优先放在技术较成熟,有明确市场需求的产品上,大力予以扶持,尽快实现产品的商品化。