登陆注册
15890000000022

第22章 基因的发现(2)

蛋白质的发现比核酸还要早30年。由于蛋白质像鸡蛋清一样一加热就会凝固,因此人们给它起名为蛋白质。蛋白质是由氨基酸组成的。

20世纪以来,人们发现的蛋白质的种类越来越多,功能也越来越广泛,起免疫作用的球蛋白,具有形形色色的生理作用的激素等都是蛋白质。因此,许多科学家猜想它很可能是遗传信息的载体,以致核酸反而遭到冷落。

那么,人们是怎样发现DNA是遗传物质呢?是细菌的转化实验为人们提供了证据。

1928年,英国细菌学家格里菲斯用肺炎双球菌对小鼠做感染实验。肺炎双球菌有两种,一种是有毒型,可以使动物患肺炎死亡,它的细胞外边有外膜;另一种是无毒型,不会引起动物患病,它的细胞外边没有外膜。

格里菲斯把有毒的肺炎双球菌加热杀死后,注射到小鼠体内,小鼠不再患病。可是当他把加热杀死后的有毒菌和活的无毒菌混合后注射到小鼠体内时,这些小鼠全都患病死亡了,而且在小鼠体内发现了活的有毒菌。

实验的结果简直让人不可思议,有毒的肺炎双球菌是从哪里来的呢?难道他们会死而复生?格里菲斯提出,死去的有毒菌中有一种转化因子,它们可以使无毒菌转化为有毒菌。

美国洛克菲勒研究所的细菌学家艾弗里敏锐地意识到格里菲斯工作的重要性。他和他的两个同事立即着手捕捉神秘的转化因子。他们把有毒的肺炎双球菌加热杀死,从其中提出蛋白质片段,放入无毒菌的培养液中,结果不起任何作用;相反,当把其中的蛋白质、糖类都除去后,剩余的物质仍有转化作用,这个剩余物质经过纯化后证明,它们就是DNA。DNA不仅可以使无毒菌转化成有毒菌,而且转化生成的有毒菌还可以一代代复制下去。这就表明,DNA是遗传信息的携带者,基因就在DNA上。

艾弗里的工作发表后,遭到了许多科学家的反对,他们不相信DNA能成为遗传信息的载体,怀疑艾弗里的实验手段不够严密,将少量的蛋白质带了进来,而恰恰就是这少量的蛋白质起了遗传作用。艾弗里本人也没能顶住传统观念的压力,只做出“DNA是个别细菌类型中特殊遗传性的携带者”的结论,并说:“可能不是核酸的自有性质,而是由于微量的附着于核酸上的其他物质起了遗传信息的作用。”

来自物理学的冲击

基因的奥秘最终被揭开,是物理学家、化学家、生物学家几路大军协同攻关的结果。

30年代,物理学正经历着一场革命——量子力学创立了。作为量子力学的旗手,著名的物理学家尼尔斯?玻尔把世界上一大批杰出的学者吸引到了丹麦的哥本哈根,他们不仅讨论物理问题,有时也涉及生物学问题,试图用刚问世的量子力学来解释基因突变等问题。

1932年,在哥本哈根举行的国际光疗会议上,玻尔作了《光和生命》的著名演讲。他有关物理学规律与生物学规律互补的哲学思想深深打动了一位年轻的物理学家,他就是德尔布吕克。

德尔布吕克1906年出生于德国柏林,大学时攻读的是原子物理学,曾担任过著名物理学家迈特纳的助手,并在玻尔实验室工作过。他被神秘的基因所吸引,深感这是解开生命奥秘的一把钥匙。因此,他决定放弃原子物理学研究,转向生物学研究。

1937年,德尔布吕克来到美国加利福尼亚工学院摩尔根的研究基地果蝇实验室,从事遗传学核心问题——基因复制的研究。那时一些生物学家已开始用大肠杆菌、噬菌体代替果蝇进行遗传学研究。这立即引起了他的重视。

噬菌体是一种病毒,比细菌小得多,它能够侵入细菌,在20分钟内就繁殖出数百个后代,致细菌于死地,因此人们叫他噬菌体。噬菌体的结构非常简单,只有一个蛋白质外壳,里边包着DNA,可以说是一个包着蛋白质外壳的自由基因组,因此是研究基因和遗传信息传递的最好材料。

德尔布吕克与从意大利来到美国的生物学家卢里亚、美国生物学家赫尔希建立了闻名世界的噬菌体研究小组。他们每年夏天都要在纽约附近的冷泉港举办“噬菌体”暑期讲习班,团结和培养了一批年轻有为的科学家,被人们称为遗传信息学派。他们应用噬菌体技术,进行了许多出色的工作,其中最重要的工作之一,就是确凿无疑地证明了DNA是基因的化学实体。

实验是由赫尔希和他的学生蔡斯做的。他们巧妙地应用同位素标记技术,使噬菌体内的DNA标记上放射性同位素磷,使噬菌体的蛋白质膜标记上放射性同位素硫,然而观察放射性磷和放射性硫的行踪,这样也就可以知道DNA和蛋白质的行踪了。

他们让标记过的噬菌体去感染大肠杆菌,结果发现,噬菌体在进入大肠杆菌时,先来了个金蝉脱壳,把蛋白质外壳留在了大肠杆菌的外边,只有DNA分子进入大肠杆菌,而正是这个DNA分子,在大肠杆菌中繁殖出许多新的噬菌体。这就清楚地表明了,噬菌体的遗传物质是在DNA上,它不仅包括了DNA自我复制的信息,而且还包括指导外壳蛋白合成的信息。

这个实验一公布,立即得到了人们的公认。一旦认定了DNA的作用,一场全力以赴搞清DNA的结构,揭示遗传之谜的竞赛就在世界上许多个实验室中激烈地开展起来了。

德尔布吕克、卢里亚、赫尔希因从事噬菌体研究,对创立分子生物学作出的贡献,1969年共获诺贝尔生理学或医学奖。

在谈到物理学家对生物学的影响时,还必须提到的另一位科学家就是量子力学的创始人之一薛定谔。他在1944年出版了著名的《生命是什么》一书,提出染色体是由化学成分相同而结构不同的单体组成的。单体严格、精确排列,构成了遗传密码,就像莫尔斯的电报用点和线(?—)排列,构成大量信息一样。这本书启发了人们用全新的物理思想和方法来研究生物学,吸引了一大批有才华的年轻物理学家转向生物学研究,叩开了分子生物的大门。

发现DNA双螺旋结构既然DNA是遗传的关键物质,那么它一定有复杂的结构,以一定方式携带各种遗传密码,并使它们能一代代传递下去。

怎样才能知道DNA的分子结构呢?用光学显微镜可以看到细胞以及细胞中的染色体。可是要观察分子结构,光学显微镜就无能为力了。科学家们搬来了新武器,那就是X射线衍射技术。

X射线衍射技术是1912年由英国物理学家布拉格父子开创的。X射线的波长很短,和晶体内原子(或分子)间的距离相近。因此,当一束X光通过晶体时就会发生衍射,射线的强度在某些方向上加强,某些方向上减弱。分析这种衍射图样,就可以确定晶体内部原子间的排列和距离。

小布拉格的学生阿斯特伯里首先用X射线衍射法来测定核酸和蛋白质的结构。尽管他们拍出的照片质量不高,但是已经可以看出,核酸和蛋白质都是折叠的卷曲的长纤维。

50年代初,随着对DNA作用认识的深入,更多的科学家投入了对核酸结构的研究。其中有三个著名的小组,一个是英国皇家学院的晶体衍射专家维尔金斯和年轻的女科学家弗兰克林。

他们制成了高度定向DNA纤维,拍摄到了非常清晰的DNA X射线衍射照片。正是这张照片为DNA双螺旋结构的发现提供了极其重要的依据。

另一个是美国加州工学院著名的结构化学家鲍林。在此之前,他已经建立了蛋白质以肽链为骨架的α螺旋结构,他对DNA结构提出了三链模型。

而最后捷足先登,发现DNA双螺旋结构的是在英国卡文迪什实验室工作的美国年轻生物学家沃森和英国物理学家克里克。

沃森1928年出生于美国芝加哥,大学时在美国芝加哥大学学习动物学,后获博士学位。还在学生时代,他就被薛定谔的《生命是什么》一书迷住了,这本书决定了他一生的道路,那就是揭开生命之谜。

大学毕业后,他来到著名的遗传信息学派卢里亚的研究所,专门进行噬菌体研究。1951年,23岁的年轻有为的沃森被派到英国剑桥大学卡文迪什实验室深造。

在卡文迪什,沃森遇到了英国伦敦大学毕业的物理学家克里克。克里克比沃森年长12岁,他也是被薛定谔的《生命是什么》一书打动,转向生物学研究的。他曾和著名的结构派佩鲁茨等人一起从事过血红蛋白的X射线结晶学研究,在研究X射线衍射照片方面有很高的造诣。

沃森与克里克一见如故,他们发现彼此都对基因分子感兴趣。一个生物学家,一个物理学家,一个遗传信息学派,一个结构学派,组成了理想的搭档,开始了揭开基因奥秘这一生物学史上激动人心的合作。

当时的DNA射线衍射照片表明,DNA很可能具有螺旋形几何形状。沃森和克里克先建立了一个三链的模型,但很快就被指出是错误的。由于没有清晰的高质量照片做实验依据,他们的研究进展甚微。

1953年2月,当沃森参观皇家学院实验室时,看到了威尔金斯和弗兰克林拍摄到的那张非常出色的DNA的照片。威尔金斯小组认为照片排除了双链的可能性,可是照片中央那小小十字架图样却牢牢吸引住了沃森,他敏锐地意识到,DNA分子很可能是双链结构。

他和克里克立即投入了建立双链模型的研究。沃森后来这样形容他们这一点的工作:兴趣盎然、个人摩擦、令人沮丧的失败和突如其来的灵感交错在一起。

他们建立的双螺旋结构是以核苷酸中的糖和磷酸为骨架,碱基两两相联夹于螺旋链之间。DNA有4种碱基:腺嘌呤(A)、脑腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C),起先他们让相同的碱基配对,如A基与A基配对,T基与T基配对。但是这种对称式配对方式却使两条链发生扭曲。

正当他们伤脑筋时,美国生化学家查哥夫对DNA的研究成果给了他们很大帮助。查哥夫发现,在他分析的每个DNA标本中,A和T的数目相等,G和C的数目相等,而A、T与G、C的比例则随生物物种的不同而变化。

经过深入研究思考,沃森和克里克终于找到了答案,那就是让A基和T基配对,G基和C基配对,DNA的双螺旋结构被发现了!

其实,当时已接近发现DNA双螺旋结构的不止沃森和克里克。鲍林由于陷入了三迭链的错误设想中而功亏一匮,威尔金斯和弗兰克林又没有能跳出蛋白质的单螺旋结构而错失良机。年轻的沃森和克里克既没有鲍林那样丰富的学识和经验,又没有像威尔金斯和弗兰克林首先掌握了第一手资料,他们为什么能战胜对手,捷足先登呢?这不仅仅是因为他们个人的智慧和想象力,两个人知识互补、相互配合,而且因为他们善于博采众长,集思广益,他们吸收了鲍林提出的氢键结合概念,从查哥夫那里知道了正确的碱基比,接受了同办公室化学家多诺休对他们模型提出的意见,争取到了数学家格里费思的帮助……正是在众人工作的基础上,最后才别出心裁地提出碱基互补的DNA双螺旋模型。不难看出,揭开基因奥秘并非一二个科学家的功劳,而是众多科学家众擎齐举的结果。

沃森和克里克的研究结果与威尔金斯小组提供的X射线衍射照片,一起发表于1953年4月份的英国《自然》杂志上。由于这一成就,沃森、克里克、威尔金斯三人共同获得了1962年的诺贝尔生理学或医学奖。

DNA双螺旋结构的发现被认为是20世纪最伟大的发现之一。

它使人们对千百年来迷惑不解的遗传之谜有了本质的了解,解释了生命为什么能一代又一代自我复制。

就在DNA双螺旋问世不久,遗传密码也被破译了。每三个碱基组成一个密码,这样一共有64个密码子,其中61个密码子与组成蛋白质的20种氨基酸相关,其余3个密码子则在制造某种氨基酸中起起动、停止等“标点符号”的作用。

UCAC

U苯丙氨酸丝氨酸酪氨酸半胱氨酸U

苯丙氨酸丝氨酸酪氨酸半胱氨酸C

亮氨酸丝氨酸终止号终止号A

亮氨酸丝氨酸终止号色氨酸G

C亮氨酸脯氨酸组氨酸

精氨酸U

亮氨酸脯氨酸组氨酸精氨酸C

亮氨酸脯氨酸谷氨酰胺精氨酸A

亮氨酸脯氨酸谷氨酰胺精氨酸G

A异亮氨酸苏氨酸天门冬酰氨丝氨酸

U异亮氨酸苏氨酸天门冬酰氨丝氨酸C

异亮氨酸苏氨酸赖氨酸精氨酸A

甲硫氨酸苏氨酸赖氨酸精氨酸G

G缬氨酸丙氨酸天门冬氨酸甘氨酸U

缬氨酸丙氨酸天门冬氨酸甘氨酸C

缬氨酸丙氨酸谷氨酸甘氨酸A

缬氨酸丙氨酸谷氨酸甘氨酸G

DNA双螺旋结构的发现,还使人们对种种生命现象有了更深刻的认识。各种先天性遗传病,就是由于基因的异常引起的,而癌症的发生则与基因的变异、调控失灵有关……

由于DNA双螺旋结构的发现,还导致了一门新的学科——遗传工程的诞生。人们可以把一个物种的遗传基因转移到另一个物种中,从而创造新的物种;还可以用正常的基因来代替修补缺损的基因等。这不仅在生物学研究中有重要意义,而且在农业、医学、环保、资源利用、发展新一代生物计算机等方面有着广阔的应用前景。

DNA双螺旋结构的发现带来了分子生物学的突飞猛进,它深刻地影响到人类生活的方方面面,使人们迎来了一个新的时代,那就是分子生物学称雄的时代。

同类推荐
  • 动手做实验丛书--光学实验改进设计实践

    动手做实验丛书--光学实验改进设计实践

    本系列丛书主要介绍动手做实验,本书详细讲解了光学实验改进设计实践等内容。
  • 水是人类的朋友

    水是人类的朋友

    本书分为“水世界”和“中华源”两篇,从大历史观角度呈现出水与人类健康的本然关系,探寻水与人类健康的故事。
  • 现代科技大观(上)

    现代科技大观(上)

    本套书简明扼要,通俗易懂,生动有趣,图文并茂,体系完整,有助于读者开阔视野,深化对于中华文明的了解和认识;有助于优化知识结构,激发创造激情;也有助于培养博大的学术胸怀,树立积极向上的人生观,从而更好地适应新世纪对人才全面发展的要求。
  • 新奇小百科(2)

    新奇小百科(2)

    本书文字浅显,语言通俗易懂,篇幅短小精悍,内容奇特有趣,具有知识性、科学性、史料性。本书的读者对象广泛,小学高年级学生,初、高中学生,社会各界人士都可阅读,并可在阅读中受到启发和教育。
  • 我的第一本百科知识书

    我的第一本百科知识书

    少年儿童求知欲强。浩渺神秘的宇宙,广阔神奇的大地,百变玄奥的自然现象,复杂万象的人体,稀奇有趣的动植物,以及现代高科技产品等,都是少年儿童渴望了解的知识领域。本书内容涵盖天文、地理、自然、社会、动物、植物、科技及生活等方面,内容丰富、科学有趣、通俗易懂,不仅能够丰富少年儿童的课外知识,而且可以激发他们对未知事物的探索欲。
热门推荐
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 邪王追妻:废柴长女逆天记

    邪王追妻:废柴长女逆天记

    她,现代最后的玄术师,却穿成了太守府爹不疼娘去世的废柴大小姐。他,倾城之貌只手遮天,无人能知其来历的神秘强者。受人鄙薄,她凭借手中神秘小鼎炼制天下奇药神器,年纪轻轻便名扬天下一洗前耻!奇遇连连,她四大圣兽尽在掌握,纵然被大陆王者觊觎追杀亦潇洒进阶化神,反噬霸主,华丽反击!两个极端存在的碰撞,命运的约定与追寻,冷心冷清的他为何对她情有独钟?逆天神鼎,天神邪尊,前世今生。且看他们如何开场华宴,盛装掀起大陆风云!【情节虚构,请勿模仿】
  • 游戏人生之世界树之巅

    游戏人生之世界树之巅

    该游戏由星奈科技公司于2010年制作并推出的PC游戏——《TopOfWorldTree世界树之巅》游戏介绍:光明刺穿混沌苍穹,一颗天外之物落于这死寂之星,诞生出一棵创生之树。它将混沌驱散,将生命播种,世界以此为起点铺开画卷,人们为纪念它,为其命名-世界树。那些不断探索向前的生灵,为登上它的顶点,为站在世界的顶点,不断地挑战,不断地变强,终有一日,他将登上世界树之巅玩法核心:游戏包含多人竞技,副本挑战,社交聊天,人物养成等元素,您的目标是成为最强生灵,登上世界树之巅制作组:星奈科技公司为您倾情奉献!!!
  • 我想静候在你左边

    我想静候在你左边

    “子墨,你有爱过我吗?”“没有,从来没有。”我在时光尽头看流光溢彩,待你而归。
  • 虐爱总裁大人求放手

    虐爱总裁大人求放手

    当她爱他时,他却视而不见。当她不爱他时,他却追悔莫及。。。。。。
  • 临风若秀抱美男

    临风若秀抱美男

    睁眼的时候,我明显感觉到我有百分之99.99穿越了,因为我正在一片绿树葱葱天蓝地阔的景布上做无威亚自由落体运动,于是我放声高呼“救命啊!”再次睁眼,果然,穿越成功,可是老天爷,你不要开玩笑好不好?你怎么把我变成了一个男的!?人家明明是外表柔弱内心坚强的美女好不好!
  • 太宗文德传

    太宗文德传

    十年生死两茫茫,不思量,自难忘……一对两小无猜的恋人,只因出身公卿贵府,只因不能对那些受难之人忍心,于是便就此踏上了一条称帝封后的不归路——他可以为天下人牵念挂怀,却独独不能为自己的爱妻留一点心。她可以为天下人忧心思虑,却万万不敢为自己的爱郞留一丝念。人生如此,何趣?不若来世做对普通夫妻,你欢喜打雀捉鱼,我煮饭洗衣。
  • 重生之大佬又开挂了

    重生之大佬又开挂了

    【爽文+团宠=+掉马甲】宋也重生了,重生在一个同名同姓的娇小姐身上。宋也第一次见温年之的时候,用一句话形容就是:温文尔雅面如冠玉,斯斯文文的,真喜欢。宋也再一次见到温年之的时候,笑着对他说:温先生好巧哦!他应了一声,动手他捏了捏她脸,宋也呆了,心想:莫名其妙,怕是有病,还是远离点。又在一次巧妙的偶遇温年之,宋也望了望天,心想:这世界为何如此之小,怕什么来什么!温年之第一次见宋也便觉得她香香的,娇娇的,软软的,想养。温年之第二次见宋也感觉越来越强烈的想养着,想抱一抱,捏一捏,有想法不如立刻行动,他捏了捏宋也得脸,心想,手感不错比想象中的还要好。温年之第三次见宋也一脸无比的温柔笑着对着她说:宋也给你两个选择,第一是跟我回家,第二是带我回家。宋也看了看他,想了想,有钱有颜有身材,关键还有一点动心,对着他说:“成交。“其实天底下那么多的偶遇,只有一个设计者跟参与者。宋也#温年之#宠文#甜文#想要甜甜的恋爱。
  • 喜欢你不只易点

    喜欢你不只易点

    渐渐的你会发现,其实一个人的生活是最好的。
  • 妩媚重生

    妩媚重生

    前世的她因为父母离异而性格自卑的就像一只丑小鸭,逆来顺受,从不敢开口要求什么。她唯一的愿望就是和心爱的老公一起,幸福的生活下去,尽管所有的亲朋好友们都没有祝福过。命运也抛弃了她,让她在即将成为母亲的时候,夺走了她的生命但是,故事并没有结束,幸运却在此时降临在她身上!不仅让她回到了过去,还得到了超能力。这一世她会怎样弥补前世的遗憾?她又将怎么使用穿镜术,自然力等能力度过最终的考验?她又会在前世心爱的人和今生不断出现的帅哥美男中怎样选择?