登陆注册
10823600000022

第22章 中国近现代科技史(5)

苏步青是我国著名的数学家,国际公认的几何学权威,中国微分几何学派创始人,被国际上誉为“东方国度上灿烂的数学明星”。他在仿射微分几何方面高水平的研究,至今在国际数学界仍占有无可争辩的地位。他开辟了微分几何研究的新局面,建立了一系列新理论,在数学发展史上留下了一座丰碑。早在20世纪20年代,他在一般曲面研究中发现了四次(三阶)代数锥面,成为几何研究中的重大突破,在国际上被命名为“苏氏锥面”;他发现的戈德序列中的第二个伴随二次曲面。被称为“苏的二次曲面”;在射影曲面论研究中,对周期为4的拉普拉斯序列作了深入而富有成效的工作,这种序列被称为“苏链”。他在射影曲线论、高维空间共轭网理论、一般空问微分几何学等方面的研究中,做出了许多贡献。在计算几何中,他将仿射不变理论首创性地应用于造船工业的船体数学放样、航空工业的涡轮的叶片空间造型以及船体和汽车外形设计等,收到了显著效果,为数学的工业应用开创了新路。德国著名数学家布拉顺克说:“苏步青是东方第一几何学家。”

熊氏无穷级

熊庆来,中国现代数学和科技界一代宗师。1932年,他作为中国第一个出席国际数学家大会的代表赴瑞士苏黎世参会,会后赴法国从事函数论研究,两年后获得法国国家理科博士学位,其博士论文《关于整函数与无穷极的亚纯函数》中定义的无穷数,被国际数学界誉为“熊氏定理”,又称“熊氏无穷级”,载入了世界数学史册,为祖国赢得了荣誉。

林士谔方法

林士谔是我国自动控制专家、航空教育家,在麻省理工学院读研究生时,林士谔师从世界著名科学家、陀螺仪表专家德雷珀博士,1939年6月获博士学位。在他的博士论文《飞机自动控制理论》中,林士谔创造性地提出了高阶方程劈因解根法。这种方法被国际数学界命名为“林士谔法”,并被许多书刊所引用。

在当时计算机科学尚不发达的情况下,要解四阶以上的高阶代数方程,非常困难,林士谔利用求实系数代数方程的复根时,找出其一个二次因子来求得方程的复根,之后不断重复修正,直至达到要求精度为止。这种求实系数代数方程的复很方法,避免了复数运算。在1940年8月、1943年8月和1947年7月,林士谔先后在麻省理工学院出版的《数学及物理》杂志上接连发表了3篇关于解算高阶方程式复根方法的论文,获得了当时国际数学界相当高的评价。这个以中国人名字命名的方法至今还在被发展,并应用现代计算机来进行快速运算。林士谔这一贡献曾为自动控制系统稳定性的研究以及计算数学领域中的近似求解做出了重要的贡献,同时也为中国人争得了荣誉,在《中国大百科全书·航空航天卷》、《中国名人词典》、《中国科学家词典》和《数学手册》中都有所记载。

华氏定理

作为科学家,华罗庚解放后第一个从国外回归新中国,是新中国数学研究事业的创始人,也是中国在世界上最有影响的数学家之一。他是中国解析数论、典型群论、矩阵几何等许多方面研究的创始人和开拓者。

少年时华罗庚即对数学产生浓厚兴趣,通过自学,1930年发表的论文《苏家驹之代数五次方程式解法不能成立的理由》,引起清华大学数学系主任熊庆来教授高度重视。1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文。他关于完整三角和的研究成果被国际数学界称为“华氏定理”。“华氏定理”使著名数学家哈代修改了自己即将出版的著作。华罗庚还彻底解决了19世纪数学之王高斯提出的完整三角和估计问题,轰动剑桥,被视为“剑桥的光荣”。此外,他还与数学家王元于1959年开拓了用代数论的方法研究多重积分近似的新领域,其研究成果被国际数学界誉为“华一王方法”。在美国芝加哥科学技术博物馆所列当今88位数学伟人的名单中,华罗庚的名字赫然其间。

钱学森的《工程控制论》

1954年,钱学森在美国出版英文版《工程控制论》一书,系统总结了自动控制理论的新发展,开创了一门新的技术科学。《工程控制论》一问世,很快在美国科学界有识之士中间,引起了广泛关注。他们认为,此书是这个领域中奠基式的著作,是继美国科学家维纳之后又一个辉煌的成就。因此。该书赢得了很高的国际声誉。两年以后,该书的俄文版、德文版和中文版相继出版。

《工程控制论》是钱学森在科学领域中的哲学思想和文字才华的集中表现。一位专栏作家对钱学森的《工程控制论》作了评论。他写道:控制论是关于工程技术领域各个系统自动控制和自动调节的理论。维纳博士40年代提出了控制论的基本思想后,不少工程师和数学博士曾寻找通往这座理论顶峰的道路,但均半途而废。工程师偏重于实践,解决具体问题,不善于上升到理论高度、数学家则擅长理论分析,却不善于从一般到个别去解决实际问题。钱学森则集中两个优势于一身,高超地将两只轮子装到一辆战车上,碾出了工程控制论研究的一条新途径。他的开创性著作《工程控制论》被世界公认为自动化控制技术的理论基础。40多年来,这本著作为世界各国科学家广为引证、参考,成为自动控制领域引用率最高的经典著作。

单调算子思想的提出

1956年,中国数学家关肇直在《数学学报》上发表《解非线性函数方程的最速下降法》的论文。该文证明了求解希尔伯特空间中非线性方程的最速下降法依这个空间中的范数收敛,并且和线性问题相仿,其收敛速度是依照等比级数的。这种方法可以用来解某些非线性积分方程以及某些非线性微分方程的边值问题。此后无穷维情形最速下降法得到了迅速发展。特别应该指出的是,这篇论文中首次出现了单调算子的思想。论文的主要假设是位算子导数的正定性。关肇直指出“在较弱的条件下证明本文中所提出的方法的收敛性似乎是值得研究的问题”。后来人们通过进一步深人研究发现,这个较弱的条件就是目前大家所知道的(强)单调性条件。

单调算子概念的正式提出是60年代初的事情。单调性理论,包括单调算子、增生算子、非线性半群和非线性发展方程等等的理论,现今已经成为非线性泛函分析中的一个重要分支。关肇直对单调算子理论的成长作了开创性的工作。

柯氏定理

在20世纪60年代,我国数学家柯召解决了100多年数学界都没有解决的难题,即著名的“正定二次型的类数和不定方程”中的卡特兰问题。柯召的研究成果被国际数学界称为“柯氏定理”。与“柯氏定理”相联系的是在国际上受到高度赞誉的一种富有创造性的方法“柯氏方法”。另外他与数学家孙琦在数论方面的研究成果在国际上被称为“柯——孙猜测”。

杨张定理

1925年,芬兰数学家奈望利纳在函数值分布论的研究中,创造了一种理论,认为:在大量常见和重要的函数中,绝大部分函数取每个值的次数是相近的,只有一小部分例外。这些例外的值就叫做“亏值”。长期以来,对于“亏值”的研究成了函数值分布论研究中的一个主要课题。另外,当研究大量常见和重要的函数的变化情况时,在自变量变化范围的有些部分上,函数取值特别多,变化异常剧烈,数学上把这种现象描述为“奇异方向”。对这种“奇异方向”的研究,构成了函数值分布论中的另一个重要课题。为解开这两个难题,长期以来,国际数学界的许多优秀专家倾注了他们无数的心血。我国数学家杨乐和张广厚在他们的研究中,一反以往数学界只把“亏值”和“奇异方向”作为两个互不相连的难题进行探索的做法,以崭新的思路寻找突破,终于获得新发现。他们认识到,“亏值”是整体性的概念,反映了函数取值亏损和变化平缓的情况,而“奇异方向”是局部性的概念。反映了函数取值多和变化剧烈的情况;“亏值”和“奇异方向”构成一对矛盾,其相互间的关系并不是对立、排异的,而是相互依赖、有机联系的互为基础的统一概念。他们用几十年的辛劳和智慧换来的发现,为数学界两个长期分割的研究领域架起了一座彩桥。从1965年到1977年,杨乐与张广厚合作发表了有关函数论的重要论文近10篇,不仅发现了“亏值”和“奇异方向”之间的联系,而且完全解决了50年来的悬案——奇异方向的分布问题。他们的成果推动了函数理论的发展,也轰动了国际数学界。被国际数学界称为“杨张定理”或“杨张不等式”。

1978年4月13日,在苏黎世国际数学大会上,杨乐报告了他和张广厚的研究成果,引起了强烈反响。与会的数学家们称颂这是“惊人的成果”,近代函数值分布论的创始人、荷兰数学家奈望利纳对杨乐说:“刚才你说,你们是来向欧洲数学家学习的,我认为,现在欧洲数学家们应该向你们学习了。”在美国出版的一份有关数学研究的报告完整地引述了杨乐、张广厚的定理,评价它是“既新颖又深刻”,与哥德巴赫猜想研究一样是纯粹数学方面“第一流的工作”。美国著名函数论专家居垒欣则认为:“杨乐与张广厚在北京领导着一个成果丰硕、欣欣向荣的学派。”

侯氏定理

Q过程的惟一性是概率论中齐次可列马尔可夫过程的一个重要命题,这项成果可应用于导弹轨道的计算以及地震预报、气象预报、生物遗传研究工作。我国数学家侯振挺于1974年发表论文,在概率论的研究中,提出了有极高价值的“Q过程惟一性准则的一个最小非负数解法”,解决了数学家们40年来一直探索的Q过程惟一性准则,震惊了国际数学界,被称为“候氏定理”,他因此荣获了国际概率论研究卓越成就奖——“戴维逊奖”。他的研究成果除Q过程推一性准则外,还有Q过程样本函数构造理论、齐次可列马尔可夫过程研究中的最小非负解法和极限过渡法等。

陈氏定理

1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:

命题A:每一个大于或等于6的偶数都可表示成两个奇素数之和;

命题B:每一个大于或等于9的奇数都可表示成三个奇素数之和。

这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明第一个就足够了。哥德巴赫猜想自提出后的200多年来,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。但因问题复杂艰深,课题始终悬而未决。以至于希尔伯特把它列为20世纪要解决的重大问题之一。有的数学家还把哥德巴赫猜想比喻为“数学王冠上的明珠”。

我国著名数学家陈景润,经过长期刻苦钻研、日夜计算,初步把哥德巴赫猜想求证到世界最领先地位,并于1966年5月在中国科学院刊物《科学通报》第17期上发表论文,正式宣布他已经证明了:任何一个充分大的偶数,都可以表示为一个素数加上顶多是两个素数的乘积(简称“1+2”)。因为没有发表详细的证明过程,当时他的这一成果并未得到国际上的承认。前辈数论专家阅闵鹤仔细审阅了陈景润的长达200页的论文原稿,确认证明无误,但建议他改进、简化。1973年,陈景润在《中国科学》上正式全文发表了他的著名论文“大偶数表为一个素数及不超过两个素数的乘积之和”,在哥德巴赫猜想的研究道路上取得了至今领先的成果,把200多年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步。这一辉煌成就立即震动了国内外数学界,国际上称之为“陈氏定理”。英国数学家哈伯斯坦和德国数学家黎希达曾合著的《筛选》一书,原有10章,直到付印后才见到陈景润发表的关于“1+2”的论文内容,于是特地添写了该书的第11章,章题就定为“陈氏定理”。

吴氏方法

1977年,数学家吴文俊正式发表了用机器证明几何定理的新方法,受到了世界的公认,被誉为“吴氏方法”。运用该种方法,实现了欧氏几何定理证明的机械化,有着重要应用价值。于是,世界数学界诞生了一个新的研究领域——数学机械化。如同工业革命实现体力劳动机械化一样,“吴氏方法”带来了全球脑力劳动机械化。美国前人工智能协会主席布莱德梭曾致函中国领导人:“吴的工作是一流的,他独自使中国在该领域进入国际领先行列。”

近代数学史上第一次由中国人开创的这一新领域,吸引了各国的众多数学家前来学习。因为“手工计算上千项的证明要几天功夫,用计算机1秒钟就可以完成”。该方法已在计算机图形学、机械设计、理论物理等领域获得重要应用,它将引起数学研究方式的变革。1991年,吴文俊获第三届世界科学家数学奖,1997年获Herbrand自动推理成就奖。

诺贝尔奖没有设数学奖,人们通常把“菲尔兹奖”誉为数学中的诺贝尔奖。吴文俊的方法被5位菲尔兹奖获得者引用,有3位的获奖工作还使用了吴文俊的方法。一直到最近两年,仍有菲尔兹奖得主在引用吴文俊的经典结果。2000年该成果获首届国家最高科学技术奖。吴文俊还为拓扑学做出了奠基性的贡献,50年代他的“示性类”和“示嵌类”研究被国际数学界命名为“吴公式”、“吴示性类”、“吴示嵌类”。

最早攻克“瓦利隆猜想”

瓦利隆猜想是世界著名数学难题。它源于1928年法国著名数学家瓦利隆提出的一个猜想,‘即“有穷正级亚纯函数与其导函数是否存在公共(BOVEL)方向”。这是亚纯函数研究领域中一个十分重大的问题。半个多世纪以来,国内外数学家作出了极大努力,仅仅得到一些带有附加条件的结果。我国福建师大数学系研究生李松鹰,在世界上最先攻克了“瓦利隆猜想”,成功地解决了半个多世纪以来未能解决的疑难问题,引起国际数学界的轰动。

陆家羲与“大集定理”

1983年初,从美国加利福尼亚寄给包头市第九中学物理教员陆家羲一包印刷品。那是几十份世界《组合论杂志》。陆家羲的《论不相交斯坦纳三元系大集》的前三篇论文,在这家杂志的同一期一并发表,并获得崇高评价。从此宣告组合数学史上“大集定理”这一世界难题的整体解决。陆家羲的成就,令中外数学家惊叹不已,一致评价“是世界第一流的”,“起码不在陈景润之下”。加拿大多伦多大学教授曼德尔逊曾激动地对中国教授们说,陆家羲的成就“是世界上20年来设计组合方面最重大的成果之一”,是“出类拔萃的”,“在此之前,我们没有料到斯坦纳问题会这么快就得到解决”。

哈密尔顿系统的辛几何算法

同类推荐
  • 晋风流

    晋风流

    一觉醒来,过着有钱人枯燥且乏味生活的林松成了晋惠帝。对,就是那个说“何不食肉糜”的家伙。快让他回去,他一点儿都不想当皇帝,他想过自己朴实无华且枯燥的生活……
  • 二十四史谋略通鉴

    二十四史谋略通鉴

    本书从二十四史这部中国历史的百科全书中精选了54个悬念迭起的历史故事,以此来说明和解释总结出来的54条涉及军事、政治、用人和处世的谋略。此外,本书还在每条谋略的后面补充了古今中外同类型的经典案例,并配以300余张珍贵精彩的图片,为大家展现了一个中华谋略的世界。
  • 大明悍匪

    大明悍匪

    孝宗弘治皇帝中兴大明,在这短短十多年间,大明王朝实现了短暂的兴盛。这是一个机会与危机并存的时代,有一个名叫张敬之的悍匪,打破了所有人对土匪的认知,他以全新的姿态诠释了什么才是真正的超级悍匪,大明朝上到皇帝,下到文臣武将,第一次知道土匪原来还能这么当的。
  • 北宋搅屎棍

    北宋搅屎棍

    时光的长河站着你我,李琦的到来让河流悄然分了茬。一千个人眼里有一千个北宋。亚里士多德说:给我一个支点,我能撬起地球。李琦说:给我一文铜钱,我能搅动八方风雨。
  • 三国战神风云

    三国战神风云

    乱世争霸,我主沉浮!且看齐岳如何横扫强敌,一统天下!
热门推荐
  • 爱在唐诗,情在宋词

    爱在唐诗,情在宋词

    因为喜欢唐诗宋词里的文字,所以我在那里邂逅了一场场倾城之恋。待繁华落幕,待经年流尽,爱却仍在唐诗,情也仍在宋词。在天愿作比翼鸟,在地愿为连理枝。天长地久有时尽,此恨绵绵无绝期。唐诗里的爱,宋词里的情,一经读过,便深入骨髓,想要忘记,怕是很难了。因为这里的爱和情,是契合到人的心灵深处的。那些诗词里的爱情是“死生契阔,与子成说。执子之手,与子偕老”,是“山无陵……天地和,乃敢与君绝!”千古传颂着的爱情,让我们读到了“孔雀东南飞,五里一徘徊”的优美,也为结局“自挂东南枝,举身赴清池”而肝肠寸断。
  • 少年成长至顶级

    少年成长至顶级

    一个从天而降的孩子(宇年)在一座偏远的村庄里生活了13年,在一天的危险来后出去采摘药材为村长复活,回来时村里却空无一人,却在村长的桌上发现了一封信。于是宇年便前往神迹一探究竟………触碰到机关开启了一扇门,他便进去了,发现这扇门通向了一个不同于这里的地方。这里的人都存在着境界锻体-炼气-凝气……可是发现自己无法与这个世界的人一样修炼。他偶然认识了江叶,与他成为了最好的朋友。却在他们一起外出寻宝时,江家一夜之间被屠尽,唯独一位女管家还活着,她在替家主送完礼物回来时恰好在门外透过门缝目睹了全过程。得知此事的江叶悲痛万分,扬言一定要报仇。宇年的劝说安抚了江叶的情绪,但宇年已经暗下决心一定要帮他报仇。于是宇年带着江叶四处闯荡提升修为到最顶级(还有那个女管家……………………………………)
  • 总有更好的在等你

    总有更好的在等你

    乔北辰命中注定的两个男人,一个让她飞蛾扑火伤得体无完肤,另一个却用他的美食和爱情一点点地填补着她心中的伤口,演绎一场执子之手,不离不弃。如果爱情已经走到尽头,后退一步,也许就是另一片海阔天空。不管遇到什么,别害怕,总有更好的在等你。
  • 瘟疫法典

    瘟疫法典

    神秘复苏,古老的邪恶卷土重来…诸神陨落,圣者与神子你方唱罢我登场…混乱已至,最黑暗的时代已经到来,奈兰的荣光行将熄灭……伴着席卷无尽位面的瘟疫浪潮,瘟疫之子降临了。(克苏鲁+scp基金会向)
  • 独霸星宇

    独霸星宇

    世间万物,皆有灵性,花草树木,刀枪剑戟,皆可成神。宝体出现,惊动星空,少年势强,谁与争锋,预言成真,血洗宇宙。
  • 举起这杯葡萄酒

    举起这杯葡萄酒

    书中的主人公鲁祥云,是目前中国葡萄酒界最具代表性的民营企业家。他所建的酒堡——西夫拉姆酒堡,是现今世界上最好的酒堡之一。这个酒堡的建立,标志着西夫拉姆酒业已经成为中国葡萄酒界的一匹黑马。《举起这杯葡萄酒》展现了主人公鲁祥云从一个平凡的农民,经过了生活苦难与创业艰难的双重洗礼,成就了一番事业的奋斗历史。鲁祥云身上所特有的不畏艰难、百折不挠的精神,以及对生活永不抱怨的态度,具有普遍的人生意义,闪烁着真正的人性光辉。平凡的伟大之处,就在于在默默无闻的时候,在贫穷艰难无人喝彩的时候,能够不为环境所困,追逐梦想,一砂一石地累积,最终建成理想的大厦。而梦,则如彩云,从大厦的顶端铺向远方。
  • 诱君成昏:五毒妖妃

    诱君成昏:五毒妖妃

    萧苡柔出生便命带月煞,指甲血红,命难长久,所以,从小被父亲萧墅当成活死人养大,训练她成为无心无情,心狠手辣的女人!父亲教她风情万种,诱惑君主,她忍辱负重,捕获君心。父亲教她冷血无情,心狠手辣,她杖杀宠妃,毒害龙子。萧苡柔十五岁那年,被北帝赵玉荀钦点为妃。然,新婚之夜,萧苡柔面对的却是君王与宠妃的旖旎欢爱。萧苡柔沉着以对,不卑不亢,因为,她清楚的知道,她入宫的目的,是帮助父亲,夺取天下,而不是要得到一个男人的心!她无心无爱,虚情假意。她阳奉阴违,诱君成昏。可当她突然发现,她的命,活不过二十五岁,当她想要速战速决,弑杀君王时……她却意外身怀有孕,被诬红杏出墙,君王大怒,将她贬入冷宫……数年谋划,付诸东流。此时,敌国皇子,兵临城下,只求大良萧妃。冷宫妖妃,意外成为重要筹码。可更加意外的是,失宠在冷宫的女人,北帝赵玉荀却坚决不肯交出。两国开战,战火起,大良内忧外患……而这一切却早已在一场阴谋里沉沦……
  • 晚上撩:神秘老公要不停

    晚上撩:神秘老公要不停

    双眼被蒙,她勾上他的脖,细细呢喃:“你是谁?”回答她的,是野蛮狠厉。摊上一个神秘老公,她真是倒霉透了,除了每个晚上他必定驾临,她甚至不知道他是谁。更奇怪的是,她名义上的“老公”竟然不吃醋,不发火,还给她猛灌营养品:“把身体养好,才有力气叫。”“叫你个大头鬼,晚上那个神秘人是谁?你就不怕我身体养好了怀个种吗?”她掐住“老公”的脖子大声吼叫。“怀了,就生吧,我会视如亲生的。”名义上的老公笑容灿烂。终于,她怀孕了,孕吐的难受,趴在马桶前起不来。一双有力的手臂将她捞起:“难受就去看医生。”她一转身,惊吓过度:“大…大哥?”“叫老公!”男人霸气的一声命令。
  • 仙中簪

    仙中簪

    少女萧景儿修炼途中发现自己穿书了!穿的还是一本起点男频爽文,她穿成了其中的女二号,那个为原书男主档下魔神致命一击。在全书进度50%的时候死在原书男主怀里的女二号,全书后50%讲的全是原书男主如何复活她,她俨然成为了原书男女主在一起最大的绊脚石,是读者最讨厌的角色之一。知道自己穿书的女配萧景儿因为不想死,小心翼翼避开男女主,专心修炼。于偶然间碰到了上古尊神苍灵的残魂,因其陨落,神魂碎片散落在各地,需要进行融合,在和尊神达成交易后,萧景儿边修炼边给这些神魂碎片送去金手指,帮助其脱离困境,走向人生巅峰,最后与尊神融合。顺便收回尊神散落在各地的神力,在漫长的时光中,这些神力或形成了天材地宝或形成了某人的金手指,若被有心人利用,会酿成大祸。萧景儿在修炼途中,不忘初心,拯救天下苍生于水火,同时也收获了美满的爱情。
  • 假偶天成

    假偶天成

    邱子珩摆出个狂拽酷霸的Pose,“我们在一起吧。”反正只是演戏,顾良品勉强答应,“不过我有三个条件。”他不以为意地贱贱一笑,“Noproblem,说吧。”“balabala……”听罢,邱子珩彻底笑不出了,该不会被她玩坏了吧?!高富帅与女汉子阴错阳差开始假情侣关系,然后作出个无怨尤的爱情故事。