黑暗的地方怎么会比明亮的地方“热”呢?这得从两个世纪前说起。
在19世纪1800年以前,人们都知道太阳的“白”光可以通过三棱镜被分解为红、橙、黄、绿、蓝、靛、紫七色光。这最早由大名鼎鼎的年顿在1666年实验成功。100多年过去,人们再也没有想过,太阳光除这七色光外还有,或没有什么了。
可是,出生在德国的英国物理学、天文学家赫谢耳(1738~1822)却突发奇想,在这七种可见光的“外”面,即看不见的区域,还有什么“东西”呢?于是他在1800年做了下面的实验。
他让阳光通过三棱镜后折射到后面的白色纸屏上,当然也和牛顿一样,得到了七色彩带,所不同的是,这次他还将9支完全相同的温度计在每种色区内放1支,最后两支则分别放在红光以“外”和紫光以“外”附近区域。在阳光折射的七彩光照射下,七个可见光区内的温度计温度都升高了,例如红、绿、紫光区各升高5℃、3℃和2℃;但紫光外区域的温度却未升高。他同时还发现,红光外区域温度不但升高了,而且比红光区升得还高,升高达到7℃!这使他大吃一惊——那里并没有光线照射啊!
那是不是离红光区更远的区域温度会升得更高呢?于是他又将温度计移到离红光区更远的区域,但这时温度却不再增加,反而降到室温。经过反复实验研究,他终于判定,红光外附近区域存在“红外线”或“红外辐射”。他还用实验证明,红外线不管来自地球、太阳或其他何处,都和可见光一样遵守着折射、反射定律。但比可见光更容易被空气吸收。由于它“不可见”,因此在刚发现时被称为“不可见辐射”。
红外线按波长不同还可分为近(波长075~3微米)、中(波长3~30微米)、远(波长30~1000微米)三种。任何物体在任何温度下都要不停地向外辐射红外线。
一般来说,物体温度越高,辐射红外线的能力就越强,物体在单位表面积辐射红外线能量的总功率与它自身热力学温度的4次方成正比。利用这一规律可制成红外测温仪器。当一些气体分子的运动频率与红外线的频率相当时,这些气体——例如空气中的二氧化碳、水汽,便会把红外线的能量吸收掉。因而,来自太阳的某些红外线便会被这些气体吸收;而未被气体吸收透过大气的红外线波段便称为“大气红外窗”或“红外大气窗”。在大气吸收红外线这一原理的启发下,人们得到了红外线应用的又一成果——红外气体分析。用这一技术可测出空气中的一氧化碳、二氧化碳、氧化亚氮、甲烷、乙烯等气体。这在工业、农业、环境监测、医学检验和其他科研中都有重要作用。红外线还有热效应强、易透过云雾烟尘的特点。所以加热、烘干、遥测、遥感、金属探伤、热像仪诊病、导弹、夜视、寻找地热和水源、监视森林火情、估计农作物长势和收成、气象预报、“红外显微镜”(用于测量温度)等都是它的应用实例。除太阳外,宇宙中许多天体都辐射出大量的红外线,科学家们把“红外望远镜”发射到外层空间,避免了大气对红外线的吸收,更能准确地探测到这些天体发出的红外线。
赫谢耳发现红外线后,引起了人们进一步的思考:为什么紫光以外区域温度计的示值不升高呢?是不是这里没有不可见光呢?如果有,又是什么呢?又能用什么方法探测呢?
德国物理学家里特尔(1776或1778~1810)是其中别具慧眼的一个。他意识到,用物理方法不能探测紫光外区域的情况,那就用化学方法。1810年,他将一张浸有氯化银溶液的纸片,放在前述七色彩带紫光区域以外附近的区域,经过一段时间后,发现纸片上的物质明显地变黑了。他研究后指出,这是由于纸片受到一种看不见的射线照射的结果。并把它称为“去氧射线”,即现在人所共知的“紫外线”。他还正确地确认了各种辐射对氯化银分解作用的大小实际上就是能量的大小,从而判断出紫外线的能量比紫光的能量要大。
一切高温物体都发出紫外线。它的主要作用是化学作用。紫外线照射能辨出细微的差别,例如可清晰地分辨出留在纸上的指纹。它的荧光效应可用于照明的日光灯和杀虫的黑光灯。其杀菌作用可见于消毒和治病。不过,过多的紫外线有害于人体——照射强的日光,不穿戴防护用品进行电弧焊接操作,都应避免。
通过发现红外线的故事,和对比红外线、紫外线不同的发现方式,我们可得到以下知识或启示。
首先,“光”和“热”是两个不同的概念。“光”强不一定“热”大;正因为如此,我们在研究光源时,要的是“热”不大的冷“光”源。“热”大,不一定“光”强;我们使用的红外线取暖器就是如此。
其次,科学发明发现有不同的模式和方法。如果里特尔也按赫谢耳探测紫外线那样,用物理方法来探测紫外线的话,那他将那样一无所获——赫谢耳未能发现紫外线的遗憾就在这儿。
对于懒人来说,常常希望别人告诉他一种“万能”的灵丹妙药,以便敲开科技发明发现或致富之门。我们只能遗憾地告诉他:通向这个门的道路有很多条,但要您自己去走,灵丹妙药要自己去寻!这正如一条西班牙谚语所说:“‘上帝’说,你要什么便取什么,只是要付出相当的代价。”